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Rational and Adaptive Playing

A Comparative Analysis for All Possible Prisoner’s Dilemmas*

Abstract: In this paper we compare two micro foundations for modelling human
behaviour and decision making. We focus on perfect strategic rationality on the one
hand and a simple reinforcement mechanism on the other hand. Iterated prisoner’s
dilemmas serve as the play ground for the comparison. The main lesson of our
analysis is that in the space of all possible 2x2 PDs different micro foundations do
matter. This suggests that researchers can not safely rely on the assumption that
implementing simple models of decision making will yield the same results that may
be obtained when more sophisticated decision rules are built into the agents.

0. Introduction

In this paper we compare two micro foundations for modelling human be-
haviour and decision making. Playing rationally in a game theoretical sense
will be the first micro foundation, a particular type of adaptive learning will
be the second one. Iterated prisoner’s dilemmas serve as the play ground for
the comparison. We will not be able to compare all types of adaptive learn-
ing and all rational solutions for iterated PDs. However, for certain types of
rational and adaptive solutions we will show how they behave in all possible
PDs. In the first section we propose an easily applicable method to represent
the set of all possible 2x2 PDs. The second section uses this method to de-
scribe and visualise for all possible iterated PDs the conditions under which
players who are rational in a game theoretical sense can attain cooperative so-
lutions. Our central approach is to analyse the effect of payoff parameters on
the ‘shadow of the future’ that is required to make conditionally cooperative
behaviour individually rational. More technically, we analyse how the payoff
parameters shape the minimum probability of continuation of the game that
is required for Trigger- and Tit-for-Tat equilibria in the PD-supergame. In the
third section, we use a stochastic learning model of a simple adaptive agent
to compare the corresponding results with those derived from the preceding
game theoretical analysis. The third section provides both analytical results

* Both authors contributed equally. The order of names is chosen randomly.



76 Rainer Hegselmann/Andreas Flache

on equilibria of the learning process and computer simulations that allow for
a quantitative comparison of the ‘shadow of the future’ that is needed for
cooperation between learning actors and rational actors, respectively. Section
4, finally, summarises and discusses results.

1. A Geometrical Characterisation of All Possible PDs
The general structure of a classical 2x2 PD is described by the matrix:

cooperation[C] | defection[D]
cooperation[C] | R; Ry S1 T,
defection [D] T\ S j2) Py

Table 1: PD in strategic form

A game with this general structure is a Prisoner’s Dilemma (PD) if the fol-
lowing condition is satisfied:

T;>R;>P>5; i=12. (1)

Some scholars additionally require

T, +S; < 2R; i=1,2 )

The latter requirement guarantees that in an iterated PD players who take
turns in cooperating unilaterally, like in the sequence

...(D,C),(C, D),(C, D),(D,C)...,

can never be better off than players who mutually cooperate all the time.
The set of all possible PDs simply consists of all payoff combinations that
meet the requirements (1) and/or (2). Drawing on Harris (1969), we describe
in this section an easy way to represent that set geometrically.

As a starting point it should be noted that the payoffs T}, R;, P;, S; are
values of a Neumann-Morgenstern utility function. Such a cardinal utility
function is unique up to transformations of the type

U*(z) =m-U(z) +n m > 0. (3)
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Sy

Figure 1: Normalised payoffs

Due to the uniqueness property we can always normalise PD payoffs such that
we obtain S; = 0 and T; = 1. Figure 1 illustrates the normalisation procedure.
Table 2 shows the new strategic form that we obtain after normalisation.

cooperation[C] | defection[D]
cooperation[C] | 1—-a; 1-as 0 1
defection [D] 1 0 1-b 1-b

Table 2: PD in strategic form with normalised payoffs

With normalisation, the PD condition (1) turns into

1>(1=-a;))>(1-b;)>0 i=1,2. 4)
This requirement is equivalent to the two conditions given by (5).
0<a;b <1
a; < b; i=1,2. (5)

There is no agreement in the literature that Condition (2) is essential for a
PD. However, for comparison note that with normalisation condition (2) turns
into

a; <0.5 (6)

The normalised PD condition (5) allows to characterise all possible symmetric
or asymmetric PDs in terms of a pair of ordered pairs ({(a1,b1), (a2, b2)). In the
case of symmetric PDs this reduces to only one pair (a, b) that fully describes
the game.
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Basically, the normalisation procedure ‘reduces’ four payoffs to two. The
major advantage of the procedure is to allow for simple geometrical represen-
tations of all possible PDs as a special triangle of the unit square. Figure 2
shows the ensuing representation of the payoff space of all PDs.

1
a<0.5 not
D,D efficient satisfied
equilibrium
a 0.5 -
a<banda<0.5
satisfied
0 0.5 1
b

Figure 2: The PD unit square
The essential features of the unit square are:

e All points within the unit square satisfy the conditions 0 < a,b < 1.
Accordingly, these points represent games where a dominant strategy
exists for both players. The inner unit square is the set of all symmetric
2x2 games with dominant strategies. The set of all ordered pairs of
those points is the set of all symmetric and asymmetric games with
dominant strategies for both players.

e The white triangle of the unit square (frame not included) consists of all
points that satisfy a > b, which constitutes a violation of the essential
PD condition (5) or (1), respectively. The diagonal is part of the white
triangle. Hence, in this region we get games with dominant strategies,
because the white triangle is part of the unit square. Playing dominant
strategies can result in inefficient solutions, but this is not necessarily so.
More precisely, all white points constitute the games for which mutual
play of the dominant strategy is an efficient equilibrium.

e All points in the grey triangle (borders not included) are points which
satisfy the essential PD condition a < b. Accordingly, those points
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constitute games in which mutual play of the dominant strategies is an
inefficient solution. We refer to this area of the unit square as the PD
triangle.

e In the upper part of the PD triangle, i.e. above the dotted line, we
find all points that do not satisfy the second PD condition (6) or (2),
respectively. The dotted line (a = 0.5) is part of that area.

In the following we will use the PD triangle and the unit square to com-
pare conditions for cooperation in iterated PDs between rational players and
adaptive players.

2. Trigger and Tit-For-Tat Supergame Equilibria for All
Possible PDs

Axelrod’s famous The Evolution of Cooperation (1984) made it widely known
that under certain conditions perpetual cooperation can be sustained in iter-
ated PDs, based on certain equilibria of supergame strategies. In other words:
Players who are rational in a game theoretical sense can attain mutual on-
going cooperation, despite the fact that defection is the dominant strategy
in the constituent PD. The key condition for this possibility of cooperation
is that the probability a of continuation of the game for a further iteration
exceeds a certain threshold value. The threshold condition depends on the
supergame strategy and the payoffs involved. The PD triangle allows for
straightforward visualisations of the corresponding threshold conditions over
the set of all possible PDs. We start with an analysis of what is called the
Trigger strategy (TR), i.e. the strategy that starts cooperatively but responds
to the first defection of it’s opponent with eternal own defection.

(TR, TR) is an equilibrium iff the (individual) probability for continuation
of the game, a;, and the payoffs of the game satisfy the following condition.?

T; - R; . )
aiZT::-Pf:ai i=1,2 (7
After normalisation of all payoffs (7) turns into
a; * .
ai2F=a,~ i=1,2 (8)

The PD triangle provides an easy understanding of how equilibrium conditions
behave within the class of all possible PDs. There is, firstly, a 2-dimensional
way to represent (8). The underlying idea is to visualise all games, i.e. points

2 For the (fairly simple) proof cf. Taylor 1976; 1987; Friedman 1977; 1986; Axelrod
1984.
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in the unit square, that have the same threshold. In other words, we show all
points (b, a) for which the ratio a/b is a constant. These points are located
on a straight line with the slope a/b. The line is given by

y=73e (©)

We refer to the lines defined by (9) as iso-a*-lines. To visualise the a*-
threshold condition we draw the iso-a*-lines across the PD-triangle. Figure
3 shows the result.

a 0.5

0.5
b

Figure 3: PD-triangle with iso-a*-lines for TR strategies

In Figure 3, all dotted lines are iso-a*-lines. The lines start next to the point
(0,0), because a,b > 0; and the lines end ‘immediately’ before they reach the
right border of the PD triangle, because a,b < 1. Finally, the lines ‘touch’
the border at points with b = 1. For those points we have a* = $ = ¢ =a .
Hence, we can interpret and use the right vertical border of the PD triangle
as an axis indicating possible values for a*. We refer to this right border as
the a*-axes. For all points in the PD-triangle, it holds that 0 < o* < 1.
All straight lines beginning next to the origin (0,0) and touching the a*-axes
connect all possible points, i.e. PDs, with the same threshold value for a*.
The value where the iso-a*-line touches the a*-axes shows the level of a* that
applies for all points on the corresponding iso-a*-line. All points/games on
and below a certain iso-a*-line can be solved cooperatively based on Trigger
strategies if the probability « for another iteration to take place is at least a*.
For example: In Figure 3 all points on and below the line between the origin
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and the point 0.33 on the a*-axes are PDs that can be solved cooperatively
if the probability for another iteration is not less than 0.33.

Our analysis also shows that in principle all possible PDs can be solved
cooperatively based on Trigger strategies—given that the probability « is high
enough. The reason is that for a PD it holds by definition that a < b. As a
consequence, the threshold condition (8) will always range between 0 and 1.
This is a noteworthy and remarkable fact. In Figure 3 this result is reflected
by the fact that for all points in the PD triangle we find an iso-a*-line that
touches the a*-axes between 0 and 1.

There is, secondly, a $-dimensional representation of (8) for all possible
PDs. The underlying idea is simple enough: we use the third dimension over
the PD-triangle to visualise for every point in the triangle the corresponding
threshold a*. Figure 4 demonstrates the result. The figure shows that o*
becomes extremely high as a and b get closer to each other. Those points
of the PD-triangle where the difference between a and b is small, represent
games where mutual cooperation is only slightly more attractive as compared
to mutual defection. Accordingly, in these games rational actors need to face
a long ‘shadow of the future’, i.e. a large probability a of continuation of the
game, for refraining from the temptation to defect.

Figure 4: Trigger threshold o* for all possible PDs.

The strategy combination Tit-for-Tat against Tit-for-Tat, (T FT, TFT),is in
an equilibrium if condition (10) is satisfied.3

Ti-R T,-R;, .
a,-Zmaz{Ti_Pi,Ri_Si}_ai i=1,2 (10)
After normalisation of all payoffs (10) turns into
a; a; .
> — Y Y — o =1,2 1
a,_maz{bi,l_ai} ol i=1, (11)

3 For a proof cf. Axelrod 1984, 207ff.; Taylor 1987, 60f.
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The first element of (11) is the threshold condition for (T'R, T R). We know (by
definition) that this expression always is smaller than or equal to 1, because
a; < b; for every PD. However, the second threshold in (11) exceeds 1 if
a; > 0,5. That is the case for all points in the dark grey area of the PD triangle
in Figure 5. Accordingly, all PDs in the dark grey area can never be solved
cooperatively using TFT-strategies, because the probability of continuation
can never be greater than 1. At the same time, conditional cooperation with
TR strategies is still possible in this region of the PD-triangle.

! —

cooperative solution based
on TFT not possible since
al(l1-a)>1

a 0.5
Cooperative solution based on
TFT more difficult than based
. . on TR since a/(1-a) > a/b
cooperative solution
based on TFT possible
' 1
0 0.5
b

Same threshold for TR and
TFT since a/b > a/(1- a)

Figure 5: PD triangle for TFT-strategies.

Figure 6 shows a 3-dimensional version of Figure 5. In addition to its two
dimensional counterpart, the figure illustrates that the threshold value o**
dramatically increases in the area of the triangle in which a/b < a(1 — a).
Moreover, for the one third of the PD triangle where a(1 — a) > 1, there is
not any possibility for a cooperative solution based on TFT strategies.

No cooperative solution
based on TFT possible.

Figure 6: TFT threshold o** for all possible PDs.
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Our analysis has shown a straightforward geometrical representation of how
threshold continuation probabilities for certain supergame equilibria are dis-
tributed over the PD triangle of all possible PDs. In the following, we use these
results for a comparative analysis of rational and adaptive decision making in
iterated PDs.

3. Equilibria of a Simple Learning Model for All Possible
PDs

This section presents a simple model of learning behaviour in all iterated
PDs and compares model results with the game theoretical analysis of the
preceding section. Section 3.1 describes the model. Section 3.2 derives an-
alytical conditions for equilibria of the learning process. Section 3.3, finally,
presents computer simulations for quantitative comparisons of the conditions
for cooperation generated by the two alternative micro foundations.

3.1 A Stochastic Learning Model

We apply a Bush-Mosteller stochastic learning model (Bush/Mosteller 1955)
to formalise a simple reinforcement rule of learning by trial and error. In
using this model we follow a line of work originating from the pioneering
contribution of Rapoport and Chammah (1965). More recently, stochastic
learning models have been applied in computer simulations of social dilemma,
behaviour by Macy (1989; 1991). Moreover, Roth and Erev (1995) used these
models for prediction of experimental results. However, hitherto no systematic
comparison is available of stochastic learning models with game theoretical
models of rational behaviour in Prisoner’s Dilemmas. In the following we
provide this comparison for a particular stochastic learning model.

The model assumes that both players have an internal state, their propen-
sity to cooperate, p, that changes over time on basis of the experiences players
make. The cooperation propensity p varies between 0 and 1. In every iter-
ation of the game both players simultaneously decide whether to cooperate
or defect. In iteration ¢, player i cooperates with probability p;; and defects
with probability 1 — py;.

Both players independently adapt their own cooperation propensity after
decisions are taken. The adaptation of propensities reflects the trial and
error mechanism. An actor’s propensity to repeat his most recent decision
increases when this decision was related to a satisfactory outcome. Conversely,
the propensity of repetition declines, when the related outcome is deemed
dissatisfactory. The degree of satisfaction, s, reflects the difference between
an actor’s expectation level e, and the payoff he attained, u. We assume
that s varies between —1 and +1, where negative satisfaction expresses that
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the payoff falls below the expectation level. Positive satisfaction indicates
that a payoff larger than the expectation level was attained. Equation (12)
formalises the function that translates the payoff into the satisfaction level s.

+-1, ifu<e
s(u) = (12)
=, ifu>e

In the normalised 2x2 PD, the payoff u varies between 0 and 1. Accordingly,
we assume for (12) that 0 < e < 1.

The satisfaction derived from the most recent payoff and the present
propensity to cooperate, p, shape the change of the propensity, Ap . The
magnitude of the ‘raw’ change in the propensity equals the satisfaction level.
This change is multiplied with a term ensuring that the function flattens off
when propensities approach the boundaries of the interval [0,1]. Finally, the
change in the propensity is scaled with the parameter I, the learning rate
(1 > 0). Table 3 shows how Ap is calculated.

Satisfaction
s(u) >0 s(u) <0
Decision C | s(u)l(1 - p) s(u)lp
taken D —s(u)lp | —s(u)l(1-p)

Table 3: Change in actor’s propensity to cooperate, Ap, as function of own
decision taken and satisfaction derived from the corresponding outcome, s(u).

Table 3 indicates that a learning rate smaller than one corresponds to a rela-
tively slow learning process. In this region of the parameter space, ! dampens
the effect of the satisfaction level on the change in propensity, as compared
to a learning rate of I=1. By contrast, a learning rate larger than one entails
a learning process that is faster than with I=1. At this level of I, the effect
of satisfaction on the ‘raw change’ in propensity is amplified by the learning
rate. However, this amplification makes it necessary to ensure that the learn-
ing dynamics still generate valid propensities. For this purpose, our model
clips propensities at the boundaries of the interval [0,1]. Notice that this
clipping rule is only needed for ! > 1. Equation (13) formalises the clipping
rule.

Equation (13) not only defines the clipping rule. The second purpose of
(13) is to avoid the possibility that propensities never actually attain the ex-
tremes of p=0 or p=1, even when propensities move ever closer to the extreme
values. For this purpose, we assume that actors fully commit themselves to
play a particular strategy in the subsequent iteration, if the difference be-
tween their propensity p and one of the two interval boundaries falls below
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a certain very small ‘commitment threshold’ e. Hence, we assume for both
players that the propensity to cooperate in iteration ¢ + 1, ps4; , ensues from
the propensity to cooperate in iteration t, p;, as described by (13).

pe+IAp:, fe<p+lApi<1-—e
Pi+1 = 1, ifpe+1Ap, >1—¢ (13)
0, if pr +1Ap; < e

3.2 Equilibria of the Learning Process: Analytical Results

To analyse the learning mechanism, we use the standard equilibrium concept
of the theory of dynamic systems. Broadly, an equilibrium of the learning
dynamics is a configuration of propensities in which both players show stable
behaviour. More technically, we define an equilibrium as a configuration of
propensities for which it is guaranteed that Ap = 0 for both players. Notice
that this equilibrium concept is not to be confused with the Nash-equilibrium
of the game theoretical analysis. There are equilibria of the learning dynamics
that are not Nash-equilibria in the repeated game. There are also Nash-
equilibria of the repeated game that are not equilibria of the learning process.
We discuss examples further below.

Inspection of the learning dynamics allows to considerably narrow down
the range of potential equilibria. A necessary condition for an equilibrium
is that the probability of an asymmetric outcome (CD or DC) is zero. To
explain, the learning dynamics imply that both players’ propensities decline
after an asymmetric outcome has occurred. The player who chose D attains
a payoff T=1, yielding a satisfaction of s(1) = 1. Hence, his propensity
to cooperate declines, because [Ap = —Ip (with exception of the extreme
case p=0). Correspondingly, the player who chose C attains a satisfaction of
s(=1) = -1, also resulting in Ap = —Ip. Clearly, it is not guaranteed that
Ap = 0, if the probability for an asymmetric outcome is larger than zero,
because the asymmetric outcome can only arise in the first place, when at
least one player’s propensity was not zero before. This implies the following
necessary condition for an equilibrium.

Necessary equilibrium condition. A configuration of propensities can
only be in equilibrium if the probability for an asymmetric outcome (CD or
DC) is zero. Hence, the learning process is only in equilibrium if

e both players’ propensities to cooperate are zero, or

e both players’ propensities to cooperate are one.

The necessary equilibrium condition immediately yields two equilibrium con-
ditions that are both necessary and sufficient. These conditions correspond
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with the CC-equilibrium (p=1 for both players) and the DD-equilibrium (p=0
for both players), respectively.

CC-equilibrium condition. Full cooperation, i.e., p=1 for both players,
is an equilibrium iff
a<(1-e). (14)

DD-equilibrium condition. Full defection, i.e., p=0 for both players, is
an equi- librium iff

b<(l-e) (15)
1
OnlyDD - No eqyifi-
equilibrium bri
a 05

CCangDOD | | OnlyCC o CC-equilibrium

equijibrium - equilibrium. - 4/-—\/ condition: a < 1-e
0.5 !
b

DD-equilibrium condition:
b<l-e

Figure 7: Unit-square representation of equilibrium conditions of the stochastic
learning model (e = 0.5).

The CC-equilibrium condition and the DD-equilibrium condition ensue from
the rules for the change of propensities in Table 3. To explain, in the CC-
equilibrium both players always attain a payoff of u=1-a. Correspondingly,
in the DD-equilibrium both players always attain a payoff of u=1-b. The
definition of the satisfaction function, (12), ensures that the corresponding
satisfaction levels are non-negative, iff u > e. This, in turn, is equivalent
to the inequalities (14) and (15), respectively. The rules of Table 3 ensure
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that propensities never decline after a CC outcome, iff (14) is satisfied. Sim-
ilarly, the rules of Table 3 ensure that propensities never increase after a
DD outcome, iff (15) is satisfied. This implies the CC- and DD-equilibrium
conditions, respectively.

The equilibrium conditions derived above allow to distinguish 4 regions of
qualitatively different dynamics in the unit square. Figure 7 visualises the re-
gions for an expectation level of e=0.5. Figure 7 demonstrates two qualitative
differences between Nash-equilibrium conditions and the equilibrium conditions
of the learning dynamics.

e CC can be an equilibrium of the learning dynamics, even when it is an
inefficient outcome. This occurs under the condition that both CC and
DD yield satisfactory payoffs and the DD payoff exceeds the CC payoff
(a > b). Notice that CC can never be a Nash-equilibrium under this
condition.

e CC may never be an equilibrium of the learning dynamics, even when
CC is an efficient outcome. This occurs under the condition that neither
CC nor DD yield a satisfactory payoff and the CC payoff exceeds the DD
payoff (a < b). Notice that under this condition there is always some
continuation probability o that satisfies the Nash-equilibrium condition
for Trigger strategies. However, cooperation between learning actors is
impossible here, regardless of the continuation probability c.

3.3 Quantitative Comparison of Rational Actors and Learning
Actors

The preceding analysis highlights qualitative discrepancies between the results
of rational behaviour and learning behaviour. In the following, we turn to
a quantitative comparison. As a starting point, we show in 3.3.1 that the
existence of equilibria of the learning model implies that the learning process
will converge on an equilibrium in a finite number of iterations. In 3.3.2 we
use computer simulations to estimate the continuation probabilities required
for attaining equilibria of the learning process. In 3.3.3, finally, we address
effects of a central parameter of the learning model, the learning rate [, in
order to assess the generalisability of results.

3.8.1 Convergence on the Equilibria
The CC- and DD-equilibrium conditions guarantee that there is a positive

probability that the dynamics of the model end up in the corresponding equi-
librium, if the game is played sufficiently long and both players start with a
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propensity to cooperate between zero and one. For the CC-equilibrium condi-
tion the proof can be sketched as follows. There is a certain probability that
the outcome of a particular iteration ¢ will be CC, as long as both players’
propensities to cooperate are larger than zero. The CC-equilibrium condition
implies that then both players attain positive satisfaction. Hence, both play-
ers increase their propensities to cooperate according to the rules of Table 3.
This increases the probability that the outcome of the next iteration is CC
again. If the outcome is in fact CC, this results in a further increase of the
propensities, etc. After a sufficiently large number of consecutive occurrences
of CC, both players’ propensities exceed the threshold level 1 — e, At this
point, both propensities are ‘locked in’ to full commitment to cooperation and
the CC-equilibrium is attained. In terms of markov chain theory, bilateral full
cooperation is an absorbing state of the stochastic learning process and this
state is reachable from every other combination of players’ propensities (with
exception of p=0 for both players). For the DD-equilibrium a similar rea-
soning applies. There is always a positive probability that the outcome of a
particular iteration t is an asymmetric outcome (CD or DC), as long as no
equilibrium has been attained. After an asymmetric outcome both players’
propensities decline, so that there is now certainly a positive probability for
a subsequent DD-outcome. The DD-equilibrium condition guarantees that
propensities to cooperate decline after every occurrence of DD. Hence, after
a sufficient number of consecutive occurrences of DD the dynamics stabilise
on the DD-equilibrium, if the corresponding DD-equilibrium condition is sat-
isfied.

3.3.2 Quantitative Comparison of Conditions for Cooperation

In the game-theoretical analysis we derived a measure of the restrictiveness of
conditions for cooperation in terms of the threshold continuation probability
o that is required to make conditional cooperation individually rational. That
analysis is deterministic in the sense that mutual cooperation is always indi-
vidually rational, iff the continuation probability exceeds the critical threshold
o*. Unfortunately, it is less straightforward to obtain such a threshold for the
learning model. The reason is that the learning model generates a stochastic
process that may sometimes converge on equilibrium before the game ends
and sometimes may fail to converge—under the same level of a. To attain
at least an indication for the continuation probability required, we employed
computer simulation of the stochastic learning process. With the simulation
analysis, we estimate the threshold o that is required to ensure that learning
actors attain mutual cooperation with a certain probability q. We use the

4 More precisely, it is necessary to prove here that for every small number ¢ there is a
number n of consecutive CC outcomes after which players’ propensities exceed 1 — €. The
proof is straightforward and can be obtained from the authors on request.
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symbol a? to denote the threshold level of a corresponding to a probability
of mutual cooperation of q.

The method to estimate a? departs from a simulation of the distribution
of the number of iterations that is required until a game attains lock-in on
CC. We denote this number t°C. To estimate t°C for a particular parameter
combination, we use 1.000 replications of the learning dynamics and we run
every simulation for maximally 10.000 iterations. For illustration, Figure 8
shows the distribution that we obtain for the particular combination of a=0.25
and b=0.75. Notice that this parameter combination represents a case where
only the CC-equilibrium condition is satisfied. Furthermore, we used I=1,
e=0.5 and ¢ = 0.001. Finally, we assumed that both actors start with a
propensity to cooperate of p=0.5.

Proportion
CC-lockin un-
til iteration €

tCC

10 20 30 40 50 60 70 80 90 100

Figure 8: Simulated distribution of number iterations ¢t required for
CC-lock-in (a=0.25, b=0.75, e=0.5, =1, ¢=0.001).

Figure 8 shows that the proportion of runs attaining CC-lock-in until iteration
10 is zero. Hence, at least 10 iterations are required before mutual cooperation
can stabilise. About 44% of all runs attain CC-lock-in between iteration 10
and 20, another 24% settle on mutual cooperation between iteration 20 and 30,
etc. We use statistics like this one to estimate a4. For this purpose, we vary o
between 0 and 1 in small steps, to estimate for every level of a the proportion
of runs that attains CC-lock-in before the game ends. The smallest a for
which this proportion is equal to or larger than q is the estimated value af.
To estimate the proportion of CC-lock-in for a particular «, we sum over all
iterations ¢ the estimated probability that 1) lock-in occurs in this particular
iteration and 2) the game will continue at least until this iteration. The
latter event occurs with probability t*, whereas the probability for event 1) is
derived from the statistic computed by simulation (see Figure 8). The joint
probability of both events is then obtained by multiplication of the separate
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probabilities, because the events ‘lock-in in iteration t’ and ‘continuation of
the game until iteration t’ are statistically independent.

We used the method described above to estimate for all possible games in
the unit square that satisfy the CC-equilibrium condition the indicators a0
and o, i.e. the minimum continuation probabilities required for a chance
of 50% and 90% of stabilisation on mutual cooperation before the game ends,
respectively. In the simulations, we varied both ¢ and b between 0 and 1 in
steps of 0.02. Furthermore, we used 1.000 replications and maximally 10.000
iterations per replication. Again, we employ =1, e=0.5, ¢ = 0.001 and an
initial propensity to cooperate of p=0.5 for both players. Figure 9 shows the
results. Notice that the white regions in Figure 9 represent the parts of the
unit square where the CC- equilibrium is not satisfied. ~

Figure 9: Estimated threshold continuation probability for 50% chance on
CC-lock-in (%) and 90% chance on CC-lock-in (a®®°). (Initial propensities p=0.5,
I=1, e=0.5, €=0.001). White regions: CC-equilibrium condition not satisfied.

Comparison of the results of Figure 9 with the game theoretical analysis of
Section 2 reveals three main results

e For the learning model, quantitative effects of the payoff parameters a
and b on a®® and a%? arise only for the area where both equilibrium
conditions are met. By contrast, in the game theoretical analysis we
found effects of @ and b throughout the entire PD-triangle (a < b).

e Within the region where both equilibrium conditions are satisfied, the
qualitative effects of the parameters a and b predicted by the learning
model are consistent with results of the game theoretical analysis (Fig-
ures 3-6). Higher levels of a make the conditions for mutual cooperation
more restrictive, i.e. the level of a required for a certain probability ¢
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for the CC-equilibrium increases. Conversely, higher levels of b facilitate
mutual cooperation.

o Comparison of the left part of Figure 9 (a®®) with Figure 4 above clearly
indicates that cooperation is harder to attain for learning actors as com-
pared to rational players. More precisely, throughout the region where
a < b, the continuation probability required for a 90% chance of mu-
tual cooperation between learning actors, a®?, is larger or equal to the
continuation probability a* that guarantees the individual rationality
of mutual cooperation on basis of Trigger strategies. To preview, we
show below that learning rates higher than /=1 may partially change
this result.

It is immediately clear that quantitative effects of ¢ and b on any a? arise
only in the region where the CC-equilibrium condition is satisfied. The reason
is that otherwise lock-in on CC can never occur, regardless of the number of
iterations for which the game is continued. However, Figure 9 also shows
that quantitative effects arise only in the region where the DD-equilibrium
condition is not satisfied. To understand this result of Figure 9, consider a
parameter combination that satisfies both equilibrium conditions and assume
a learning rate of I=1. For this parameter combination more than 50% of all
runs will necessarily end up in the DD-equilibrium. To explain, with initial
propensities of 0.5, about 50% of the simulation runs start in one of the states
CD or DC. In these runs, both players’ propensity to cooperate immediately
drops to zero. As a consequence, the dynamics of these runs immediately
converge on the DD-equilibrium. In addition, a certain fraction of the runs
that start with CC or DD will also converge on this equilibrium, because at
some point they enter one of the asymmetric states. For example, with a=0.25
and b=0.25 both players’ propensity to cooperate is 0.75 in the iteration
subsequent to an initial outcome of CC. This leaves a probability of 0.75 (1-
0.75) = 0.1875 for the outcome CD and the same probability for the outcome
DC. Hence, with a probability of 0.375 the outcome of the second iteration is
CD or DC. Accordingly, about 37.5% of the runs that start with CC converge
on the DD-equilibrium in the third iteration. Continuation of this reasoning
shows that additional 22% of the runs starting with CC converge on DD in
the fourth iteration, about 12% end up there in the fifth iteration, and so
on. This example shows that the probability for the DD-equilibrium within
the first four iterations always exceeds 50% if the DD-equilibrium condition
is satisfied. This explains why our simulations reveal no quantitative effects
on any af for ¢ > 50%. The reason is that the proportion of runs attaining
CC-lock-in before the game ends always remains below 50%.
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3.8.8 Effects of the Learning Rate

The preceding analyses revealed that for a certain combination of parameters
of the learning model, the conditions for cooperation between learning actors
are more restrictive as compared to conditions for rational players using Trig-
ger strategies. However, our study leaves open whether this result generalises
to other parameter combinations than the one we actually simulated. In ex-
plorative simulations we found that neither variation in the expectation level
e, nor variation in the initial propensities for cooperation, p;, change the
main results of the model comparison. At the same time, we found that the
learning rate ! has a profound effect on the prospects for cooperation between
adaptive actors. Accordingly, this section addresses effects of variation in the
learning rate.

To assess results of the learning rate, we repeated the simulation series of
Figure 9 with a relatively low learning rate, [=0.5, and a comparatively high
learning rate of I=2. Figure 10 shows the results for the estimated continuation
probability required for a 50% chance of stable mutual cooperation, a®5.

1=0.5 =2

Figure 10: Estimated minimum continuation probability for 50% chance on
CC-lock-in (a®®) for two different learning rates I. (Initial propensities p=0.5,
e=0.5, €=0.001). White regions: CC-equilibrium condition not satisfied.

Comparison of the two parts of Figure 10 and the left part of Figure 9 (a®?)
suggest two main observations.

o The learning rate ! affects the continuation probability required to attain
a chance of 50% mutual cooperation only in the region of the parameter
space where exclusively the CC-equilibrium condition is satisfied. In
particular, for [=0.5 the number of iterations required for CC-lockin
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is very large, as exemplified by the fact that for this level of I, a5 is
almost equal to 1 throughout this region of the parameter space.

o If exclusively the CC-equilibrium condition is satisfied, we find that the
higher the learning rate I, the smaller is the continuation probability
required to attain a probability of 50% for mutual cooperation.

Furthermore, comparison of the right part of Figure 10 with Figure 4 above
suggests the following.

e In a part of the region of the parameter space where exclusively the CC-
equilibrium condition is satisfied, high learning rates make conditions for
mutual cooperation between learning actors less restrictive as compared
to rational players. In particular, we find for /=2 that 50% or more
of all runs for learning actors attain CC-equilibrium even without any
repetition (a®® = 0), when a falls below 0.25 and b exceeds 0.75. By
contrast, for rational actors, a threshold level of a* = 0 can only occur
for the extreme case of a=0.

The explanation of why effects of the learning rate only occur in the CC-
equilibrium region follows the line sketched for the case of I=1. Again, the
central reason is that propensities to cooperate drop considerably after an
asymmetric outcome (CD or DC) occurred at some point in the game. For
learning rates smaller than one, DD-equilibrium does not immediately obtain
after an asymmetric outcome, because ! dampens the reduction of propen-
sities. However, with [=0.5 initial propensities still drop enough to make it
considerably likely that a sequence of consecutive DD-outcomes arises which is
long enough to drive propensities eventually into the DD-equilibrium. More-
over, with | smaller than one, the number of consecutive CC-iterations is
relatively large that is required before propensities can stabilise on the CC-
equilibrium. As a consequence, in the region of the parameter space where
both equilibrium conditions are satisfied, less than 50% of all runs attain
CC-equilibrium at all, regardless whether [ is smaller or larger than one.
The striking feature of the learning rate of [=2 is that about 50% of all
runs attain cooperation without any repetition. The explanation of this phe-
nomenon follows from the updating rules for propensities described above.
More in particular, we show, firstly, that every run that starts with CC im-
mediately attains CC-lock-in, when exclusively the CC-equilibrium condition
is satisfied and a falls below a certain threshold. Moreover, we show, secondly,
that every run that starts with DD immediately attains CC-lock-in, when b
exceeds a certain threshold and exclusively the CC-equilibrium condition is
satisfied. As to the first assertion, the reasoning is that the reinforcement
following an initial CC outcome will always drive both players’ propensities
into CC-lock-in as soon as the term [Ap is large enough to let propensities



94 Rainer Hegselmann/Andreas Flache

become equal to or larger than one. For I=2, this is the case when a < 0.25.
More in general, Table 3 above implies the condition a < (I — 1)/2l (assum-
ing e=0.5 and initial propensities of p=0.5). Hence, when this condition is
satisfied about 25% of all runs attain CC-lock-in without any repetition. The
reasoning for the second assertion follows along the same line. The nega-
tive reinforcement of defection that follows an initial DD outcome will always
drive both players’ propensities into CC-lock-in when the term [Ap exceeds
0.5. For [=2, this is the case when b > 0.75. More in general, Table 3 im-
plies the condition b > (I + 1)/2! (assuming e=0.5 and initial propensities
of p=0.5). Hence, this condition guarantees that another 25% of all runs
attain CC-lock-in without any repetition. To conclude, when both conditions
are satisfied, a learning rate of =2 guarantees that about 50% of the runs
immediately attain CC-lock-in. Finally, the above reasoning also explains the
discontinuities in the left part of Figure 10. These discontinuities arise exactly
at the thresholds where a falls below 0.25 and b exceeds 0.75, each condition
adding about 25% to the chance that CC-lock-in occurs immediately after
iteration 1.

4. Discussion

Axelrod’s famous The Ewvolution of Cooperation (1984) has popularised the
notion that cooperation is feasible even in Prisoner’s Dilemma Situations. The
central mechanism Axelrod proposed is conditional cooperation in repeated
‘games on basis of Tit-for-Tat strategies. However, following Axelrod’s work
analysts often tend to overlook that the particular payoff parameters Axelrod
has chosen represent only one special case of a Prisoner’s dilemma situation
(for a similar criticism cf. Binmore 1998). Accordingly, our paper analyses
conditions for mutual cooperation in all possible symmetrical 2x 2 Prisoner’s
Dilemmas. Moreover, we compare two different micro foundations of individ-
ual decision making that yield conditions for cooperation in iterated games.
The first micro foundation is the strategically rational actor of game theory,
the second micro foundation is a simple model of adaptive learning decision
making.

We represent the payoff space of 2x2 PDs as a unit square spanned by two
parameters ranging between zero and one. This allows for an easily accessible
representation of some well-known game theoretical results about the con-
ditions for mutual cooperation. The game theoretical analysis demonstrates
that sustained conditional cooperation is in principle feasible for every game
in the PD-triangle of the unit square. However, this does not hold for Tit-for-
Tat, it only holds for an extremely ‘intolerant’ form of conditional cooperation,
Trigger strategies. Moreover, our analysis illustrates that the smaller the pay-
off of mutual cooperation and the larger the payoff of mutual defection, the
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higher is the probability for continuation of the game (Axelrod’s ‘shadow of
the future’) that is required to make conditional cooperation an individually
rational behaviour. Finally, we show that conditional cooperation between
Tit-for-Tat strategies is never individually rational in one third of the payoff
space, i.e. in those games where the payoff of mutual cooperation is relatively
small and only slightly exceeds the payoff of mutual defection.

The unit square also proved to be a useful instrument for comparison of
micro foundations. We used a Bush-Mosteller stochastic learning model to
formalise a simple trial-and-error learning mechanism. Analysis of the equilib-
rium conditions of the learning process shows two main qualitative differences
between the micro foundations. First, in contrast with rational players, learn-
ing actors may attain mutual cooperation even when this is inefficient from
both players’ point of view. Second, for a considerable fraction of the pay-
off space, learning actors can never attain sustained mutual cooperation even
when this is efficient for both players.

We used computer simulation to obtain a quantitative comparison of the
learning mechanism with game theoretical results. Broadly, we found that for
a large range of parameter combinations of the learning model, the conditions
for mutual cooperation are more restrictive for learning actors than they are
for rational players. More technically, in this region of the parameter space the
probability of continuation of the game that is required for a chance of at least
50% of sustained mutual cooperation between learning actors is considerably
larger than the continuation probability that suffices to guarantee the individ-
ual rationality of mutual cooperation on basis of Trigger strategies. However,
further analysis revealed conditions under which cooperation between learning
players may be easier to attain as compared to cooperation between rational
actors. This is the case when the learning process is relatively fast and the
payoffs of mutual defection are small in comparison with the payoffs of mutual
cooperation. In this case, there is a considerable chance that learning players
attain sustained mutual cooperation without any ‘shadow of the future’, a
result that is clearly inconsistent with rational decision making.

Clearly, our analysis illustrates that the importance of Tit-for-Tat strate-
gies for mutual cooperation needs to be put into perspective. At the same
time, we are aware of a number of restrictions underlying our study. As to the
game theoretical analysis, we employ at least two strong idealisations. The
first idealisation is to assume that actors possess perfect information on every
aspect of the game and their opponents’ past behaviour. However, previous
game theoretical work suggests that our analysis can be extended to games
with imperfect information. For example, Hegselmann and Flache (1998) de-
rived equilibrium conditions for a PD game where actors observe only some of
the past moves of their opponents (for similar analyses cf. Green/Porter 1984;
Bendor/Mookherjee 1987). The second idealisation in the game theoretical
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analysis is that we consider only two types of equilibria, Trigger strategy equi-
libria and Tit-for-Tat equilibria. It is well known that in iterated PD-games
a multitude of different equilibria with other strategies than TR or TFT are
feasible. However, TR and TFT equilibria are probably the equilibria that
are best analysed in the game theoretical literature (e.g., Friedman 1977,
1986; Axelrod 1984; Taylor 1987) and we were mainly interested in visuali-
sation of and comparison with previous results. Moreover, the conditions for
TR equilibria in particular may be considered as necessary conditions for the
possibility of any form of conditional cooperation, because TR is the strat-
egy that imposes the severest sanction available for conditional cooperaters,
eternal defection (cf. Myerson 1991).

As to the comparison of micro foundations, we focused on two simple and
extreme representations of decision making, perfect strategic rationality on the
one hand and a simple reinforcement mechanism on the other hand. Clearly,
more ‘realistic’ models of decision making might be employed that combine el-
ements of rational ‘forward-looking’ and learning ‘backward-looking’ decision
making (cf. Fudenberg/Levine 1998). However, we believe that restriction
to our simple models is useful as a first step, because the two micro foun-
dations we use may be considered as idealised counterparts in terms of the
degree of cognitive sophistication (or: lack thereof) attributed to the players.
With this comparison we could systematically assess whether “bounded ra-
tionality” (Simon 1982) does at all affect outcomes of iterated 2x2 Prisoner’s
Dilemmas—and it does. An important lesson of our analysis is that in the
space of all possible 2x2 PDs different micro foundations do matter. This
suggests that researchers can not safely rely on the assumption that imple-
menting simple models of decision making will yield the same results that may
be obtained when more sophisticated decision rules are built into the agents.
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