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Vincent Buskens/Jeroen Weesie

Cooperation via Social Networks*

Abstract: Sufficiently frequent interaction between partners has been identified by,
a.0., Axelrod as a more-or-less sufficient condition for stable cooperation. The un-
derlying argument is that rational cooperation is ensured if short-term benefits from
opportunistic behavior are offset by the long-term costs of sanctions imposed on the
culprit. In this paper, we develop a model for ‘embedded trust’ in which a trustee
interacts with a number of trustors who may communicate via a social network with
each other about the behavior of the trustor. The analysis reconfirms the standard
predictions about how the level of trust depends on the payoffs and shadow of the
future. We provide new predictions both on between-network effects (“which net-
work is more favorable for cooperation?”) and on within-network effects (“in what
network position can you trust more?”).

1. Introduction

The study of the conditions under which cooperation among rational ego-
ists is possible has had a great impetus from the important work of Axelrod
(1984). While not the originator of the argument that cooperative behavior
may be in an actor’s enlightened self-interest if the short-term benefits from
non-cooperative behavior are exceeded by the long-term costs of sanctions im-
posed upon him, Axelrod’s seminal work contributed to the wide diffusion of
the argument in the social science literature, and has triggered a huge pile of
research. The results from Axelrod’s computer tournament about the power-
ful effect of the shadow of the future on the prospects for cooperation and the
apparent success of one particularly simple strategy, Tit-for-tat, are highly
fascinating, even though not beyond criticism (see, e.g., Binmore 1998). In
this paper, we abstain from a critical review of tiny parts or even larger frag-
ments of Axelrod’s approaches and results. Rather, we seek to elaborate on
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his results by focusing on the conditions for cooperation in order to contribute
to the research agenda set implicitly by Axelrod’s work.

Axelrod focused on repeated two-person games, in which sanctions can
only be imposed by the victim, and not by other actors in the tournament.
We argue that Axelrod’s conditions may have been too pessimistic about
the prospects of cooperation, since he restricts the long-term costs of non-
cooperative behavior to the sanctions imposed by the direct victim. In most
real settings, this is overly restrictive. Usually, dyadic relations are embedded
in a ‘network’ of relations with overlapping sets of actors. These overlaps
create dependencies between the relations that are ignored in Axelrod’s work.
A prime example is provided by communication networks that allow for rep-
utation effects: An actor has to take into account not only the partner’s
responses to his actions, but also how his behavior affects his reputation with
other actors that are relevant to him. We hasten to admit that Axelrod was
well aware that he made a substantial simplification by ignoring these repu-
tation effects as analyzed here, and we expect that he probably shared our
intuition about their importance as well (see, e.g., Axelrod 1984, chapter 1).!
One of Axelrod’s pieces of advice on promoting cooperation, however, is more
ambiguous (1984, chapter 7). Axelrod’s advice is “keep others away” (130).
Keeping others away makes good sense if this implies that the shadow of the
future with one’s partners is increased. In this paper, however, it is argued
that cooperation is also facilitated if players inform third parties about in-
teractions with a partner, and actually stimulate interactions of these third
parties with the partner.

In recent years, many empirical and theoretical studies have addressed the
effects of reputation on the behavior of actors in cooperation problems (for
example, Granovetter 1985; Kreps/Wilson 1982; Wilson 1985; Kreps 1990b;
Klein 1997). In nearly all studies that we are aware of, the authors do not
really try to assess the consequences of the observation that the reputational
mechanism usually depends on informal contacts between actors, and hence
the efficiency of the reputation mechanism should vary with the network struc-
ture.? Raub and Weesie (1990) have analyzed the first game-theoretic model
in which the actors who play iterated prisoner’s dilemmas are embedded in a
network of relations interpreted as information channels. Their model allowed
to make predictions how cooperation rates vary between networks, but did
not allow predictions about differences within networks. In this paper, we

1 Axelrod’s discussion of reputations (1984, 150-154) is more in-line with literature
on repeated games with incomplete information, in which reputation refers to a hidden
characteristics of a player, that you can learn about, both from own experience in interacting
with that player, and from observing his behavior vis-a-vis third parties.

2 Interesting exceptions concern the analyses of institutions such as law merchants and
credit rating firms, that provide formal rather than informal means to affect reputations.
See, a.0., Milgrom/Roberts 1992, 266—269.
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seek to address this problem. Thus, the information networks analyzed here
are not homogenous, i.e., we do not assume that all actors occupy a ‘similar’
position in the network.

The remainder of this paper is organized as follows. Section 2 gives a
detailed description of the model. In Section 3, some of the mathematical
properties of the model will be analyzed and equilibria are identified. Section
4 examines how the equilibrium that is chosen as the solution for the game
depends on the model parameters. Section 5 addresses how the level of trust
depends on the network among trustors. In particular, we apply an analytical
approximation method (linearization) to obtain predictions about the effects
of global and local aspects of the network between trustors. Section 6 summa-
rizes the main findings, limitations of the model, and possibilities for further
research. An appendix collects the proofs of the theorems and contains some
further technical details.

2. Construction of the Model

This section describes an analytically tractable model for predicting network
effects in trust situations. To model network effects, the minimal requirement
is a model with repeated games between (subsets of) actors who may inform
other actors about their experiences. The first element needed is a constituent
game that is played in the different periods of the game. For reasons outlined
below, we use as the constituent game a Heterogeneous Trust Game (HTG)
I'r, a variant of the Trust Game for modeling simple trust relations (Dasgupta
1988; Kreps 1990a). The extensive form of the HTG is shown in Figure 1.

2.1 The Constituent Game

Nature generates 6 > 0 randomly from a probability distribution F in the first
move of I'r. 6 is the incentive for the trustee to abuse trust placed by the
trustor. For technical reasons it is assumed that F' is an atomless probability
distribution with full support on [0,00]. An example of such a distribution
with favorable analytical properties is Fo(¥) = Pr(6 < 9) = 9/(a +9) (cf.
Raub/Weesie 1993; Weesie et al. 1998). Here, a is the median of F, and
so a can be interpreted as the trustee’s ‘average’ incentive for opportunistic
behavior. In the HTG, both trustor and trustee are informed on 6.2 In
the second move, the trustor chooses whether or not she places trust. If the
trustor does not place trust, the constituent game is over and the actors receive
a payoff P;. If the trustor places trust, the constituent game continues with

3 In an interesting variant of the model, it can be assumed that the trustor is not informed
about the incentive @ for the trustee to abuse trust. We plan to provide an analysis of this
model with incomplete information in a future paper.
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Nature: 8 ~ F

6
Trustor

place trust

Trustee no trust

honor
trust

(&)

S1
Ry+6
Figure 1: Extensive form of the Heterogeneous Trust Game I'rr, where

R >P, (i=1,2),P,>5;,0>0.
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a third move. Here, the trustee can honor trust or abuse trust. If he honors
trust, the actors receive R; > P;. If he abuses trust, the trustee receives
R340 > R, and the trustor receives S; < P;. Clearly, the trustee will always
abuse trust, and the trustor will not place trust for any > 0 in the unique
subgame-perfect equilibrium of the constituent game I'r.* The double lines
in Figure 1 indicate the predicted move for each actor in the corresponding
node of the constituent game. This equilibrium is Pareto inefficient, because
both actors prefer placing trust and honoring trust over the situation in which
no trust is placed. The difference R; — P; is the efficiency loss for the trustor
(¢ = 1) and the trustee (i = 2) due to the trust problem.

2.2 Repeating the HTG in a Network
Now, we define the Iterated Heterogeneous Trust Game IHTG I'(T'r, w, §, 7, A).

The constituent game I'r is played at discrete moments in time, ¢t = 0,1, 2,...
between a trustee and one trustor in a network of n types of trustors (m, A).5

4 Formally, it should be added that if the trustor would place trust, the trustee abuses
trust in equilibrium.

5 To avoid notational complexity the homogeneity assumption is made that the payoffs
of the trustee and the distribution F' are independent of the trustor with whom the trustee
plays. The analyses easily generalize for the case that the payoffs depend on the trustor.
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Thus, there are two main differences between the ordinary Iterated Trust
Game and the IHTG. First, the ordinary Trust Game is replaced by the HTG
as the constituent game. In the discussion about the assumptions of the model
below, we will explain the advantages of this modification. Second, we distin-
guish n types of trustors. The only difference between types is their relation
with other trustors, i.e., their position in the communication network. The
trustee plays with a network of n types of trustors (mw, A) instead of one
trustor. The vector w = (my,...,m,) reflects the proportion of the different
types of trustor in the ‘population’, with m; > 0 and Y ;. ; m; = 1. The pro-
portion 7; is the probability that a trustor of type 7 is selected for transactions
with the trustee. The entries a;; of the network matrix A are the densities of
the network between trustors of type ¢ and trustors of type j. The a;; is the
probability that one trustor of type ¢ has a tie to a given trustor of type j. It
may be the case that i = j. We assume that the networks between two types
of trustors and among trustors of one type are ‘homogeneous’ in the sense
that all trustors of a certain type have ties to the same proportion of trustors
of another type and to the same proportion of trustors within their own type.

Now, we will explain how the sequences of transactions are modeled and
when communication is possible. Again, in the discussion of the assump-
tions, we will pay attention to the reasons for these assumptions. To reduce
complexity while maintaining the essential character of network information
diffusion, we constructed a scenario in which the information diffusion process
is somehow restricted (see also Weesie et al. 1998). The first assumption is
that the trustee has transactions with trustors ‘forever’. Trustors play se-
ries of constituent games to allow for effects of temporal embeddedness as
described in the introduction, in addition to the network effects. The second
assumption is that the trustors play series of transactions with the trustee
sequentially (see Figure 1). Only after a trustor drops out, a new trustor is
chosen for a next series of transactions. A series of transactions with a trustor
of type ¢ ends with a probability d;, 0 < §; < 1, called the drop-out rate. The
termination of a series of transactions is stochastically independent of what
happened in earlier transactions.® The probability that the new trustor is a
trustor of type j is 7; independent of the identity of the trustor who drops
out. It may be the case that the new trustor is of the same type as the trustor
who drops out. It is assumed that each type of trustors consists of infinitely
many trustors to prevent that the same trustor is chosen again for a series of
transactions.”

6 This implies, for example, that the continuation of a relation does not depend on
decisions of players whether or not to continue. Endogenous probabilities are used in models
about exit out of a relation (Schuessler 1989; Vanberg/Congleton 1992; Lahno 1995; Weesie
1996; Blumberg 1997). Introducing exit endogenously in the model would complicate the
analysis considerably.

7 If one wants to assume that there are only a finite number of trustors for each type,
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Type of trustor who has transactions

1,1,...,11 3,3,...,3 l 2,2,...,2 l 2,2...,2 1 1,1...,1

opportunity for opportunity for opportunity for opportunity for
communication communication communication communication
from a type1 from a type 3  from a type 2 from a type 2
trustor to a trustor to a trustor to another trustor to a
type 3 trustor  type 2 trustor  type 2 trustor type 1 trustor

Figure 2: A sequence of transactions

The third assumption is that exclusively at the moment that one trustor drops
out and another trustor enters the game, information can be communicated
and only between the old and new trustor (see Figure 1). The trustor who
drops out transmits information to the next trustor if a tie exists between
the old and the new trustor. Thus, since the identity of a new trustor is
selected at random, the probability that a trustor of type i informs a trustor
of type j about the behavior of the trustee after a series of transactions equals
a;j. If a trustor informs the next trustor, she does not only communicate
her own experiences with the trustor, but also all information she obtained
from trustors before her. In this way, it is still possible that information
is transmitted from one trustor to another to yet another and so on. If a
trustor does not communicate with a subsequent trustor, all information of
previous transactions is lost because this trustor will not have another series
of transactions with the trustee. The new trustor has to start her series of
transactions without information about previous transactions. Furthermore,
it is assumed that all information is accurate; no incentives to withhold or
misrepresent information strategically are analyzed. Finally, it is assumed
that the trustee knows whether or not the next trustor is informed by her
predecessor. The argument for the last assumption will become apparent in
the discussion about the equilibria that will be studied.

Summarizing, three things might happen ‘between’ time ¢ and time ¢ + 1.
First, the same trustor continues a series of transactions. Second, a new
trustor is chosen and the old trustor has a tie to the new trustor, and so
informs the new trustor about the behavior of the trustee. Third, a new
trustor is chosen who is not tied to the new trustor, and she does not inform
the new trustor. Now, a transition matrix T can be derived, where t;; equals

one should assume that trustors do not remember information from earlier transactions if
they are chosen for a new series of transactions (Buskens 1999).
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the probability that the former transaction was a transaction of the trustee
with a trustor of type i, and the following transaction is with a trustor of
type j, and the trustor of type ¢ communicates the information she has to the
trustor of type j. Thus, t;; = d;m;jas; if i # j. For the diagonal elements, it
holds that t; = 1 — &; + 6;m; 044, because 1 — §; is the probability that a series
of transactions of a trustor of type ¢ continues, and d;m;c; is the probability
that a series of transactions of a trustor of type i ends and another trustor of
type 4 is chosen for a new series of transactions. In matrix form, the transition
matrix is

1—-060; +0imann  dimeaiz e 01T 01n
dami21
T= . ()
. 5n—177nan—1,n
On 1001 LR lsnﬂ'n-lan,n—l 1—06n + 0nTnann

The rows of T do not add up to 1, because the transitions in which information
is not communicated between two consecutive trustors are not included in T.
Hence, T is not a real transition matrix.

2.3 Payoffs

The payoff function is defined similarly as in the ordinary Iterated Trust
Game. If a trustor is not involved in a transaction at time ¢, she receives
a payoff 0. A trustor and trustee who are involved in the game at time ¢
obtain the payoffs related to the outcome of the game in that time period.
Payoffs are discounted exponentially with discount factor w, 0 < w < 1, for
the trustee and all types of trustors.® This discount factor reflects pure time
preferences. Thus, the total payoff of an actor i associated with a stream
of payoffs (uio,us,...) equals Y soo wlui. An important advantage of the
approach taken here is that the payoffs, discount factor, drop-out rates, and
the social network are included simultaneously in the one model. Therefore, it
is possible to deduce not only main effects of all these different elements of the
model, but also interaction effects, in particular between network parameters
and other elements of the game.

8 In the analyses, only the discount factor of the trustee is relevant. Thus, this homo-
geneity assumption is made only to avoid useless notational complexity.
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2.4 Discussion of Assumptions

First, we will discuss why the Heterogeneous Trust Game rather than the
ordinary Trust Game was chosen as the constituent game. In the solution of
the ordinary Iterated Trust Game, the trustor always places trust or never
places trust, depending on the parameters of the game. The advantage of the
IHTG is that trustors will not place trust in a period with very large 6. These
are ‘golden opportunities’ for the trustee in which the incentive to abuse trust
is so large that it exceeds possible long-term losses. This implies that, in the
IHTG, the trustor who has transactions with the trustee and the trustee will
not always obtain R;. Thus, there will always be some inefficiency. The extent
of inefficiency depends on the size of the incentive to abuse trust for which
trustors cannot trust the trustee anymore. It will be shown that in the solution
of the IHTG the trustor will only place trust if 6 is not too large. The more
the trustor trusts the trustee, the larger the values 8 for which the trustor still
places trust, and, thus, the higher the efficiency level that is reached. While
for the ordinary Iterated Trust Game hypotheses can only be derived for the
condition under which trust can always be placed, for the IHTG, hypotheses
can be derived that are direct consequences of the comparative statics on the
extent to which trust can be placed by the trustor. One thing that does not
change in comparison with the ordinary Iterated Trust Game the is that the
trustee never abuses trust in the solution presented in the next section.
Second, we want to comment on the scenario for the order of transactions
and opportunities for communication among an infinite number of trustors.
In an ‘ideal’ and more realistic model, a (finite) number of trustors would have
transactions with the trustee simultaneously as well as sequentially. Between
transactions, the trustors may have opportunities to communicate information
about the behavior of the trustee. However, the analysis of a model in which
a finite number of trustors have simultaneous transactions with the trustee
and communicate information is already very demanding. In particular, it
is complex to determine what the optimal behavior for the trustee is after
one abuse of trust. This can be understood as follows. Even under the
assumption that trustors never forget information about abused trust and
the deceived trustor transmits this information as soon as possible to other
trustors, it is not trivial whether the trustee should abuse trust again. On
the one hand, the trustee has to take into account that the trustor can obtain
information through the network that the trustee deceived another trustor
and, consequently, that the trustor might not trust the trustee anymore in
the near future. Therefore, it might be profitable for the trustee to take
the short-term profit from abusing trust. On the other hand, if the trustee
abuses trust again, the deceived trustor also starts to transmit information
about this deceit through the network. This causes that other trustors will be
informed faster about the untrustworthiness of the trustee. Thus, the trustee



52 Vincent Buskens/Jeroen Weesie

has to take into account all possible information diffusion patterns among
the trustors including his own role in this process if he would abuse trust
again. Such a scenario could be studied using simulation. We do not apply
such a simulation method, because hardly any analytic results exist for effects
of detailed network parameters on information diffusion in a game-theoretic
context as presented here. For such a complex model, it is then quite difficult
to obtain robust results in a simulation study. Therefore, it is preferable
to obtain some analytic results first, even if the model is more restrictive.
After some analytic results are obtained, the model may be extended and a
simulation could be guided by the analytic results (see Buskens 1999).

3. The Solution of the Model

We will analyze equilibria in a particular type of strategies, namely, trigger
strategies (see Friedman 1971) for I'(T'r,w, d, 7, A). The constituent game
can be characterized by the pair (i,8), where 7 is the type of trustor involved
and @ is the incentive for the trustee to abuse trust. Trigger strategies for
trustors and trustee are defined via thresholds 9. In a constituent game
(¢,0), a trustor of type ¢ will place trust if § < ¥;; and she has no information
that the trustee abused trust in the past. Otherwise, the trustor does not
place trust. Thus, a trustor does not place trust if the trustee’s incentive for
abusing trust in a particular period is too large, i.e., if @ > 9;;, or if she has
any information that the trustee abused trust in the past. Consequently, as
soon as the trustor obtains information about trust abused by the trustee,
either from own experience or from another trustor, she will never place trust
again.

Similarly, the trustee uses a trigger strategy with threshold ¥;; for his
decision node in the game (¢,6). That means that in a period with a trustor
of type i and incentive to abuse trust 6, the trustee will honor trust if trust
is placed and 6 < ¥;» and abuse trust otherwise. Moreover, the trustee will
abuse trust if the trustor has information about any abuse of trust by the
trustee.’

Important advantages of trigger strategies are that they are analytically
tractable and cognitively simple, i.e., they do not make excessive demands
on the cognitive skills or memory of the actors. Equilibria will be found in
which trust is only placed if the incentive for abusing trust is not too large.
These equilibria are suboptimal, because all actors would receive a higher

9 In the appendix, it is shown that this last addition to the strategy description of the
trustee is only necessary to obtain subgame-perfect equilibria. In equilibrium, the trustor
will never place trust if she has information about an abuse of trust. Therefore, the behavior
of the trustee in such situations only guarantees equilibrium behavior in subgames that are
not part of the equilibrium path.
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payoff, if trust would always be placed and honored. This is a consequence
of choosing a Heterogeneous Trust Game instead of a standard Trust Game
as the constituent game, as we explained before. This leads to the favorable
property of the model that the thresholds are a measure for efficiency that
permits comparison of the trigger equilibria with the efficient situation that
trust is always placed and honored. The higher the threshold #, the higher
the proportion of transactions () in which the trustor will trust the trustee,
the higher the efficiency.

The following theorem states that in a subgame-perfect equilibrium in
trigger strategies, for each type of trustors, the associated thresholds for the
trustee and the trustor are the same (9;; = ¥;2).1° Hence, on the equilibrium
path, trust is placed and honored, or trust is not placed, but it never happens
that trust is placed and the trustee abuses trust. In other words, trust will not
always be placed, but if trust is placed, it will never be abused in equilibrium.!!

Theorem 1 The IHTG I'(Tr,w,d,n, A) has the following properties.

i) At least one subgame-perfect equilibrium in trigger strategies exists: 9;; =
Biz = 0 for all 1.

i) If a vector of trigger strategies is a subgame-perfect equilibrium, 9;; =
Die for all i.

Proof The proofs of this theorem and all other theorems in this paper can
be found in the technical appendix.

As a result of this theorem, trigger-strategy equilibrium vectors are denoted,
with some abuse of notation, by 9 = (¢4, ...,9,). In the following theorem, a
solution of the game I'(T'r,w, d, 7, A) is specified. A condition for subgame-
perfect equilibrium in trigger strategies is given. Because usually multiple

10 Strictly speaking, the game does not have proper subgames as soon as a trustor does not
communicate with the subsequent trustor, because everything what has happened before is
unknown by the new trustor. Still, it is a subgame if a period starting with an uninformed
new trustor is considered as the start of a new game or a collapse of all possible prior states
to one new state that resembles the initial beginning of the game. For the trustor, the
situation is exactly the same as in the beginning of the game. The only concern is that the
trustee remembers what happened before in the game. This is not problematic because the
trigger strategies of the trustee are not conditioned on what happened earlier in the game,
but only on what the trustor knows about past periods (see also the appendix).

11 There exist many equilibria that involve other strategies as follows from the Folk
Theorem (see, for example, Fudenberg/Tirole 1991, Section 5.1). Other strategies, for
example, strategies in which trustors refrain from placing trust for only a finite number of
time periods might be in equilibrium. Threatening with ‘eternal’ punishment, however, is
the most effective in our model in which actors perfectly monitor each other. The reason
is that the trustee’s loss after abused trust is maximized. Therefore, trust of the trustor
will be as large as possible using trigger strategies if there exist equilibria in these trigger
strategies.



54 Vincent Buskens/Jeroen Weesie

equilibria in trigger strategies exist, the condition of the first part of the
theorem does not provide explicit predictions for the behavior of the actors.
For example, according to Theorem 1, never placing trust by the trustor is
an equilibrium (9 = 0). For equilibrium selection within the class of trigger
strategies we use payoff dominance (Harsanyi/Selten 1988, 80-81), i.e, one
equilibrium is selected over another equilibrium if the expected payoff is at
least as large for all actors. The second part of the next theorem states
that the payoff dominance selection criterion yields a unique subgame-perfect
equilibrium in the class of trigger strategies. The 9* that belong to this
subgame-perfect equilibrium is called the solution of the game.

Theorem 2 Consider the IHTG I'Tp,w,d,n, A) with transition matriz T.
Let T, = (I — wT)1.12

i) The vector 9 = (¥1,...,9,) of trigger strategies is in subgame-perfect
equilibrium if and only if

9; < (Ry — Py)el(Ty — I)F(¥) for alli. (2)

ii) There exists a unique Pareto-optimal subgame-perfect equilibrium in the
class of trigger strategies, with thresholds 9*. This solution 9* can be
characterized as the mazimal solution in 9 of

9; = (Re — P)el(Tw — I)F(9) for all i, (3)

where
e; is the i-th unit vector of length n,

1 is an identity matriz of size n,and

F®9) = (F(%1),...,F(9n)) -

The solution 9* specifies for every trustor the Pareto-optimal equilibrium
threshold and indicates ‘how much’ the trustor can trust the trustee. We
will call the threshold that belongs to the solution of the game the trust
threshold. The essential property of the solution is that the trustor places
trust if the incentive to abuse trust for the trustee is ‘compensated’ by the
expected number of times he will be sanctioned by the trustors, weighted by
time preferences. This number depends on the ‘network effect’ of a trustor, in
particular, it depends on how long the information about abuse of trust will
be in the network. In the following section, I elaborate on how the solution
of the model depends on the parameters of the model.

12 We define generally X,, = (I — wX)~!. Invertability is ensured by the theory of
non-negative matrices (Berman/Plemmons 1979, 133).
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4. Properties of the Solution

Although equation (3) seems to be a rather complicated formula, the different
elements of the model are clearly separated. The first part on the right-hand
side contains the sanction costs for the trustee (R — P;)e}. The second term
involves the matrix (T, —I); the element (T, —1I);; is the expected discounted
number of times a trustor of type j will not place trust after the trustee has
abused trust placed by a trustor of type i. Note that in this expression the
discount factor w is the discount factor of the trustee. The discount factors
of the trustors do not affect the trust thresholds. Moreover, the payoffs of the
trustors do not influence the trust threshold. In particular, the payoff S; for
the trustors when trust would be abused, does not affect the extent to which
the trustors trust the trustee, although it can be argued that the higher the
payoff for the trustor if trust would be abused, the less problematic placing
trust is.}® S; does not affect the solution because in the equilibria in the class
of trigger strategies, trust is never abused. Namely, if trust would be abused,
the trustor would have ‘known’ that in advance and she would not have placed
trust. Consequently, the model does not provide predictions about effects of
payoffs and the discount factors of trustors on the extent to which trustors
can place trust. Finally, it can be seen from equation (3) that the distribution
F of incentives to abuse trust is important. Before the comparative statics of
the trust thresholds are studied, we will discuss some special cases.

4.1 Special Cases

NO NETWORK EMBEDDEDNESS AND NO TEMPORAL EMBEDDEDNESS. With-
out social network and without temporal embeddedness, a;; = 0 and §; = 1
for all ¢ and j, the game is a one-shot game. No information of abusing
trust by the trustee is transferred to the next period. Thus, there is a unique
equilibrium, in which trust is never placed (¥ = 0).

NoO NETWORK EMBEDDEDNESS. If a;; = O for all ¢ and j, no information
transfer between different types of trustors occurs (see also Raub/Weesie
1993). The extent to which trust is placed, is the maximal solution in 9;
of

_ w(l - 5,‘)
- 1- w(l - 61)
Thus, what happens between a trustor of type ¢ and the trustee does not de-

pend on the trustors of other types. The constructive proof of assertion %) of
Theorem 2 (see the technical appendix) implies that, although the solution is

A (R2 - Pz)F(’ﬂz) for all 4. (4)

13 See Snijders 1996 for experimental evidence in one-shot games.
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only characterized implicitly, if the right-hand side of (4) increases, the equal-
ity becomes a strict inequality and, consequently, that the new solution is a
(strict) Pareto improvement of the former solution. Thus, the trust thresholds
are higher if temporal embeddedness increases (4; decreases), if the discount
factor (w) is higher, and if the sanction costs for the trustee (R; — P;) are
higher.

PERFECT NETWORK EMBEDDEDNESS. If a;; = 1 for all ¢ and j, information
of abusing trust by the trustee will be known for ever by the trustors who
have to play the game. Therefore, trust will never be placed after the first
defection of the trustee. Thus, § does not matter anymore; the identities
of the trustors have become irrelevant. The restriction for payoff dominant
subgame-perfect equilibrium in this case is given by the maximal solution in

49 of w

9= m(RQ - Pz)F('l9) for all 1, (5)
which is a special case of (4) with § = 0. Thus, here trust thresholds increase
with the discount factor and the sanction costs.

HOMOGENEOUS NETWORK. Let a;; = ap for all i # j, oy = o1, §; = 6,
and m; = ;1; for all 3. Then, the trust thresholds are the same for all types of
trustors. The assumption implies that for all pairs of types of trustors, the
between-type network has density a;, while for all types of trustors the within-
type network has density az. The ‘within-type’ density may be different from
the ‘between-type’ density. The result associated with these parameters is
similar to the result from Weesie et al. (1998) for homogeneous networks, and
equals the maximal solution in ¥ of

wn + wn

= Tm(Rz - B)F(9), (6)

where gy =1—-46 + J—zl and 1y = é%z, This equation implies that the trust
thresholds increase in the within-type density a; and in the between-type
density as.

IDENTICAL OUTDEGREES. The last special case is the case that é; = § and
= % for all 4, and all types of trustors have the same probability to transmit
their information to the next trustor, i.e., all types of trustors have the same

outdegree:
n
D1 T
n
Zj:l 7T.7

The fact that all outdegrees are the same implies that all types of trustors
transmit information to the next trustor with the same probability. This

Doy (3) = = q for all i. (7
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implies that the expected time that information about a deceit by the trustee
remains in the network is always the same. Therefore, trust thresholds are the
same for all types of trustors if all types of trustors have the same Doy (7). The
trust thresholds satisfy the solution for homogeneous networks in equation (6).
Thus, the structure of the network does not matter if the Doyt (2) are the same
for all types of trustors.

4.2 General Results

The thresholds 9" indicate the maximal incentives for the trustee to abuse
trust for which the trustors still trust the trustee. In this sense, 9* is an
indicator for the extent to which types of trustors can trust the trustee.
F(®*) = (F(%),...,F(¥,)) are the proportions of transactions in which
the different types of trustors will place trust. Because F'(9*) is the expected
proportion of periods a trustor expects to obtain R; compared to P, this
might be an even better indicator than 9* for how efficiently trustors can
arrange their transactions. We derive how both indicators for trust depend
on the parameters of the model.

Theorem 3 The payoff dominant subgame-perfect equilibrium in trigger strate-
gies with trust thresholds 9" has the following properties.

i) U7 and F(0}) increase in the sanction costs for the trustee Ry — Py for
all 3.

i) 97 and F(9}) increase in the discount factor w of the trustee for all i
and are independent of the discount factors of the trustors.

i) U7 and F(9}) decrease in the drop-out rate &; if and only if a path exists
from any trustor of type i to some trustors of type j in the network
(m,A).

i) 97 and F(9}) increase in a;i if and only if a path exists from any trustor
of type i to some trustors of type j in the network (m, A).

v) 9% and F(9}) decrease in F in the sense of stochastic ordering.!*

By Theorem 3, a trustor will trust the trustee more often and efficiency will
be higher, if the sanction costs for the trustee (Ry — P,) are higher. In
other words, if the trustee suffers more if a trustor does not place trust, this
trustor will more frequently trust the trustee. Moreover, if the future is more
important to the trustee (w is larger), punishment by the trustor will be

14 By < F; in the sense of stochastic ordering means that Fy(8) > Fz(8) for all 8 > 0.
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more severe for the trustee and so the trust threshold ¥} and the degree of
efficiency F'(J7) will be higher. If the incentives for abusing trust become
smaller in the sense of stochastic ordering, the trust threshold will be higher,
and the proportion of periods in which trust can be placed increases. If the
trustee deals with a trustor of type ¢ for a longer time (§; is smaller), the
trustor of type i has better punishment possibilities and so 9} becomes larger
with temporal embeddedness. In addition, trust thresholds of those trustors
increase who, directly or indirectly, have ties to trustors of type i. The reason
for this is that if a trustor of type j is deceived by the trustee, there is a
probability that a trustor of type ¢ receives information about that deceit.
The corresponding punishment of the trustee by trustors of type i is expected
to be larger if §; increases. Thus, effects of temporal embeddedness increase
with a longer bilateral shadow of the future. And, network effects increase
with the density of the network between types of trustors (a;x increases) and
with the shadow of the future for connected others. These effects imply that
sanctions for the trustee are larger if information about abused trust stays
longer among trustors, not necessarily the deceived trustor, and if information
is transferred with a higher probability to other trustors. Again, it is seen
here that, in particular, possibilities for transmitting information to others
increase trust.

The comparative statics of the model for non-network parameters are
in correspondence with earlier models in which the network structure was
not modeled explicitly (for example, Raub/Weesie 1993; Weesie et al. 1998).
Thus, the additional assumptions made to incorporate the social network in
a way that analytical tractability is maintained, do not distort findings about
the effects of other parameters. However, concerning network embeddedness,
the only result for the new model is that trust increases in the a;;. This does
not even imply that trust increases in the overall density of the network.

Unfortunately, the analytic results do not yet provide insights in the effects
of network parameters on the trust thresholds. The results do not show
whether trust thresholds increase or decrease in the outdegree of a particular
trustor, or what the effect is of centralization of the network. We were not able
to derive such results analytically, at least partly because the trust thresholds
are not given as explicit functions of the relevant network parameters. Section
5 describes the linearization if the trust thresholds. Using this approximation,
hypotheses are developed about the effects of the network parameters on trust
thresholds as ‘approximate implications’ of the model. Before we continue
with the approximation, we discuss two theorems on the relation between the
trust thresholds and the global network structure.
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4.3 Global Network Implications

We present two theorems stating what the ‘optimal’ global network configu-
ration would be if the outdegrees Doy (%) of all types of trustors are given. If
no other restrictions are made with respect to the contacts of the trustors,
the set of equilibria have a lattice structure: an optimal structure exists that
is Pareto superior—in the sense that the trust thresholds are higher for all
types of trustors—to other all network structures with the same outdegrees.
If the extra restriction is imposed that ties should be symmetric, a unique
Pareto-optimal network structure does generally not exist. Nevertheless, we
can indicate the optimal structure under the assumption that all trustors
spread their ties in an individually rational manner, but that the ties cannot
be forced unilaterally. First, we discuss the theorem for n = 2 to find indica-
tions about structures that lead to the highest levels of trust. Thereafter, we
generalize this theorem with an inductive argument to n > 2.

Theorem 4 Consider the IHTG I'(Tr,w, 8,7, A) with k =2 and 6; = 02 =
d.

i) If Dous(1) > Dout(2), the 95 and 95 are optimal with relation to the
network structure for a transition matriz T*,

o ( 1-6+6min(m, Dous(1))  §max(0, Doue(1) — 1) ) ®)
- d min(71, Dout(2)) 1 -4+ dmax(0, Doyt (2) —m) |~

#) If Dout(1) > Dout(2), 12 = ag1 (symmetric relations), and we assume
that bilateral relations cannot be forced unilaterally, then ¥7 and 95 are
(individually) optimal with relation to the network structure for a tran-
sition matriz T*

™ = 1 — 6 + d min(m1, Dout (1)) 6 max(0, Dout (1) — m1) 9
- 6 max(0, Dout (1) — m1) 1 = 6 + 6(Dout (2) — max(0, Dout (1) — m) ) ©)

Theorem 4 shows that the network that is centralized around the trustors
with the highest outdegree is the ‘best’ network that can be constructed for
fixed outdegrees. Part ii) of the theorem considers only symmetric relations
(aij = aji). Because trustors of type 1 have the most ties, the optimal
distribution of ties as given in the theorem prescribes that there are as much
as possible ties among trustors of type 1. If the network between trustors of
type 1 is complete and trustors of type 1 have ties left, these are ties between
trustors of type 1 and trustors of type 2. The remainder of the ties of trustors
of type 2 are used between themselves. The following theorem generalizes the
results from Theorem 4 for n > 2.
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Theorem 5 Consider the IHTG I'(T'r,w,d,w,A) withd; =6 = -+ = 6 =
6. Then the following properties hold.

i) If Doyt (1) > Dout(2) > - -+ > Dous(k) then the v%,...,9}; are optimal if
the transition matriz T is chosen such that everybody communicates as
much as possible to trustors of type 1, after that communicates as much
as possible to trustors of type 2, and so on.

i) If Dout(1) > Dout(2) > -+ > Dout(k) and aij = aji,i # j (symmetric
relations) and we assume that bilateral relations cannot be forced uni-
lateral, then the ¥} are (individually) optimal if in the transition matriz
T o1y is chosen mazimal first. After that we choose the a;; mazimal
for which i +j = 3. Then the a;; for which i + j = 4 are set mazimal,
and so on.

The last two theorems indicate how trustors can organize their (limited) num-
ber of ties such that information is optimally communicated through the net-
work. It should be noted that the emphasis in the model is on the trans-
mission of information to others. For optimal sanctions, information should
be transmitted as long as possible to other trustors. For this aim, the net-
work structures specified in the theorems above are optimal. The trustors are
not interested in receiving information because in equilibrium trust is never
abused and, consequently, there will never be information about abused trust
in the network. In the asymmetric case, the trustors with relatively few ties
will hardly ever or never receive information, but they do not care. In the
symmetric case, the optimal structure is as well suited for transmitting as
for receiving information as a result of the symmetry. However, although the
symmetric structures are individually optimal based on bilateral choices from
trustors, they are in fact worst cases for the trustors with the lowest outde-
grees because these trustors are largely condemned to communication among
each other which implies that information does not reach very far.

5. Approximation Using Linearization

In Section 3, we characterized implicitly the trust thresholds of the trustors in
the IHTG in terms of the parameters of I'(T'r,w, §, 7, A). To obtain a better
understanding in the properties of the solution (3) of the IHTG, we apply
linearization. Explicit linearization can be applied around function values
where explicit expressions of the trust thresholds can be obtained. As can
be seen from the ‘special cases’, such an explicit expression is possible for a
homogeneous network

Ay = a;1+ asJ, where J = 11, (10)
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and if we use a specific distribution of incentives to abuse trust, F,(f) =
;3;-5,6 > 0,a > 0. Below, we will also use the first derivative of F,(f) with
respect to 6, f,(0) = m. To be able to focus on the network effects on
the trust thresholds, we use two additional homogeneity assumptions:

7r,~=l and §; =46 for alls.
n

A first-order approximation is deduced for the trust threshold corresponding
to a network matrix A in the ‘neighborhood’ of Ay under the assumption
that positive equilibria exist. The approximation symbol (=) in the Theorem
6 indicates that the difference between the approximation and the true value
is in the order of magnitude of the difference between A and A, (see the
appendix for details). Theorem 6 gives the first-order approximation of the
trust thresholds 9*(A) for A.

Theorem 6 Let A ~ Ag = ayI + apJ and 97 (Ao) > 0 for all i. Then the
solution of equation (8) for trust thresholds ¥* satisfies
9*(A) = 9"(Ao)+p1(T+ p2J)(A — Ap)l
= 9(Ao) +1p1 (Dous(A) — Dous(Ao) ) (1)

+n2pipa (A(A) - A(Ao)) 1,

where

_6
a+6’
— 6w(R2 - Pz)Fa(’ﬂa)
n(l —wn — nwne))(1 — wm (1 + p))
_ (14 fa(95)(R2 — P,))wne

Fo(0) = f=F, (12)

1 > 0: (13)

= >0, 14

P2 =TT (wm + nwn2)(1 + p) (14)
Doyt the vector of all outdegrees, and (15)
1= fa(95)(R2 — P2), (16)
n1=1—6+&%,andn2=6—:3. an

It follows immediately from Theorem 6 that np; indicates the magnitude of
the change in the trust thresholds for a change in the outdegree for a certain
trustor, while n2p; ps is the ‘weight’ of a small increase in total density of the
network. Because p; and ps are both positive, positive effects are predicted
of outdegree and density on the trust thresholds 9*. The magnitudes of
the effects of outdegree and density depend on the other parameters of the
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model (R; — P, a, w, §, and n). If p; and p, would be clearly monotonic in
some of the parameters, interaction effects could be derived from the theorem
straightforwardly. However, we did not find arguments that p; is monotonic
in any of the parameters in the relevant range. Consequently, we do not find
hypotheses about interaction effects between outdegree and density, and the
other parameters directly from this linearization.

However, the linearization result does imply that the parameters in the
game-theoretic model determine how large the relative size of the effects of
changes in outdegree and density will be. The parameter p2, or more precisely
npz, can be interpreted as the relative effect of density compared to outde-
gree. Again, monotonicity of p, is not guaranteed for w and §. However,
two monotonic effects are found, namely, p; increases in a and decreases in
Ry — P,.15 Therefore, it is predicted that density becomes more important
compared to outdegree if the sanction costs for the trustee (R — P;) decrease
and if the median incentive for the trustee to abuse trust (a) increases. These
two results are intuitively appealing because they indicate that the ‘whole net-
work’ (density) becomes more important compared to ‘ego-centered network’
(outdegree) if the trust problem in the constituent game increases. Thus, if
trust problems are relatively small, it is important that trustors know a num-
ber of others who may sanction an untrustworthy trustee. However, if trust
problems increase it becomes more and more important that these others also
know each other.

The findings based on linearization are limited to networks ‘close’ to a
homogeneous situation. They cannot be generalized to more heterogeneous
networks without further examination. Therefore, in another paper, we use a
simulation method in which we also investigate effects of network parameters
other than density and outdegree on trust thresholds in more heterogeneous
networks (Buskens 1998). The following conclusions were based on this sim-
ulation. First, outdegree and density are also the most important predictors
for the trust thresholds in more heterogeneous networks. The effects for other
network parameters are (much) smaller. Second, it is demonstrated that the
trust thresholds increase with the centralization of the network only if trustors
with higher outdegrees have also high indegrees. This corresponds with our
results in Theorem 4 and Theorem 5. Finally, the simulation provides sev-
eral predictions for interaction effects between network parameters and other
aspects of the IHTG. Most notably, the simulation predicts that density be-
comes more important compared to outdegree if a trustor is more vulnerable,
i.e., if sanctions for the trustee of withholding trust are smaller, the duration
of a series of transactions is shorter, and the trustee has larger incentives to
abuse trust.

15 These results can be seen directly from (14), realizing that u(Rz — P3) fa(B3) =

— — — 2 . . . .
g,. _:;) 2= ( R:——ng;”w (w':"l" 12 y7» Which decreases in Ry — P; and increases in a.
o
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6. Conclusions and Discussion

Axelrod (1984) has argued, a.o., that cooperation can be based on the weight-
ing of short-term benefits, and long-term costs that increase in the ‘shadow of
the future’. The analysis of the model discussed in this paper demonstrates
that this argument can be extended from dyadic encounters to encounters that
are embedded in a social network. Sanctions against untrustworthy partners
can be executed not only by the direct partner but also by other actors in the
social network. This aggravates the consequences of the sanctions and, thus,
the possibilities for cooperative behavior increase with network embedded-
ness. In accordance with existing informal and formal literature (Granovetter
1985; Coleman 1990; Raub/Weesie 1993; Weesie et al. 1998), more trust is
possible if the costs of sanctions for the trustee are higher (Ry — P,), if the
trustee is more patient (i.e., w is higher), if the trustor expects to be involved
with the trustee for a longer time (4;), and if the average incentive for the
trustee to abuse trust (F') becomes smaller. In addition we predict that trust
is higher in more dense networks, and that trustors with a higher outdegree
can place more trust. Furthermore, we obtained some results for specific net-
work structures. First, if all types of trustors in the network have the same
outdegree, the network structure has no affect on the possibility to arrange
transactions with incomplete contracts. Second, if the outdegrees differ, the
network that is centralized around the trustors with the highest outdegrees
produces the highest levels of trust.

Our results are derived in a model that makes strong—maybe too strong—
assumptions that we may relax in future models. A restrictive feature of our
model is that trustors act sequentially, not simultaneously. Also, only after a
trustor’s series of transaction ends and a new trustor starts her interactions
with the trustee, trustors can exchange information, and they can do so only
once. Obtaining analytical results for models with trustors, operating in par-
allel, who are incompletely connected via information channels, will probably
prove to be very difficult, if not impossible for all but the simplest of cases.
Various types of computer simulation could be used here. Simulations in the
spirit of evolutionary game theory (i.e., with a fixed strategy pool as in the
famous computer tournaments of Axelrod) or of genetic algorithms (with a
strategy pool, evolving in a quasi-biological way; see Holland 1975; 1998; Ax-
elrod 1986; 1997) can be useful here. We feel, however, that it is hard not
to be cautious enough in generalizing simulation results for so complicated
models if a firm analytical understanding of at least certain special cases is
not available (see Binmore 1998 for similar criticism on Axelrod’s original
simulations).

Another possibility is to explore Von Neumann’s cellular automata in
which cells correspond to actors who play some (iterated) game with their
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neighbors on the board. This approach was also pioneered by Axelrod (1984,
chapter 8), and can be seen as a study of network effects as well. The network
effect in the cellular automaton approach is of a totally different nature than
in this paper, namely the network is seen as a source of information about
what constitutes successful behavior (of course, the conceptual step from ob-
serving behavior to observing strategies is a very long one!) that one simply
imitates. Thus, the network may give information about successful strategies,
irrespective of the partner, and not only about the behavior or characteristics
or specific partners.

One can also turn to developing models that make simplifying assumptions
in another direction. An example is the stochastic diffusion model considered
by Buskens/Yamaguchi (1999). Here, the micro-behavioral assumption of
incentive-guided behavior is replaced by a much simpler stochastic model.
This allows to study more complicated structures in terms of scheduling of
actions of actors.

A second problem with our model is that we cannot make predictions
about the effect of the payoffs and time preferences of the trustors on the
levels of trust. Technically, this is mainly due to our assumption that the
trustors can perfectly observe the behavior of the trustee. If this would not
be the case, trustors would have to be more careful with their punishment
strategy—recall, they are now assumed to be non-forgiving, the most severe
punishment possible—because they may think that the trustee defected, while
in fact the trustee did not. Punishment is also costly for the trustor and the
more costly it is the more careful she should be (see, e.g., Green/Porter 1984).
Another complete information assumption may even be less realistic: We have
assumed that the social network among the trustors is common knowledge to
all players. There is ample empirical evidence that people have very scarce and
even systematically biased information about the network they are embedded
in. For instance, people often think of themselves as more more central in
networks then they really are (Kumbasar et al. 1994). Intuitively, it is not
very clear how our predictions are affected if we relax this assumption. We
would not be surprised if a theoretical analysis may yield that, under some
conditions yet unknown, a trustee will rationally be very careful and not abuse
trust unless he is quite certain he can do so with limited consequences. In
other cases, it may simply be ‘boundedly rational’ to play it safe if one intends
‘to stay in business’ (Macaulay 1963).
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Appendix Mathematical Details

Proof of Theorem 1 (page 53) If all actors play the one-shot equilibrium strate-
gies D; all the time, this constitutes a subgame-perfect equilibrium. This proves
assertion i). Now consider a strategy vector (911,...,9n1, 12, ... ,Un2). First, as-
sume i1 < ¥z for at least one i. Then, a trustor of type i does not maximize her
payoff. If she chooses ¥i1 = ¥;2, her payoff increases with R, — P, every time that
di1 < 6 < ¥;2. This occurs with positive probability since F has full support. In
all other cases the payoff is the same. On the other hand, assume 9;; > ¥; for at
least one 4. In this case, a trustor of type i does not maximize her payoff, because
the trustee will play D; if 9;1 > 6 > 9;2. The trustee will receive Rz + 6, while the
trustor receives S1 and in all the following games the trustor plays D; and receives
a payoff P1. However, if the trustor had chosen ¥;; = 92, she would have received
Py in the game mentioned and R; or P in all the following games, which is more
than she receives now. Thus, if ¥;1 # ¥:2, the trustor of type i increases her payoff
by moving her threshold toward the threshold of the trustee. Therefore, if 9, # Yio
the trustor does not use a best reply. This shows that the trustor’s threshold and
trustee’s threshold with respect to this trustor are the same in equilibrium.

Proof of Theorem 2 (page 54) First, we prove the equilibrium condition of
assertion i). The game analyzed here is a repeated game with infinite horizon
and exponential discounting. Hence, we can use a well-known result of dynamic
programming theory, namely, Bellman’s optimality principle (Bellman 1954; Kreps
1990b). Optimality on the equilibrium path is guaranteed if deviations from the
prescribed path in any decision node do not increase the payoff. Therefore, it has
to be proven that if an actor makes a one-step deviation from the equilibrium path,
the actor’s payoff will not increase. Without loss of generality, consider deviations
at time ¢ = 0. The involved trustor is a trustor of type i. First, consider 8 > ¥;.
Then, both actors defect, and, therefore, no one has an incentive to deviate. Now,
consider § < ¥;. Again the trustor has no incentive to deviate, because on the
equilibrium path she receives her maximal payoff R;. The trustee should play D,
if he can obtain a short-term gain that is higher than the long-term loss due to
the punishment by the trustors. Thus, it has to be proven that the restriction in
Theorem 2 is exactly the condition that the long-term loss for the trustee will be
larger than the short-term gain, if he plays Dy and 6 < ¥;. In other words, we will
show that the trustee also does not have an incentive to deviate from the equilibrium
path.

Let EU2(C3, 6;99) be the expected payoff for the trustee if both actors follow the
trigger strategy. In equilibrium, no trustor is ever informed about deviations from
the equilibrium path by the trustee. To calculate the expected payoff of the trustee,
a matrix is used that contains the probabilities about which trustor will be involved
in subsequent games. The information exchange opportunities are not relevant in
this case. The probability matrix equals
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where the diagonal elements are the probabilities that the same trustor continues
a series of transactions or stops and is chosen again as the new trustor. The other
elements are the probabilities that one trustor stops and another trustor starts a
series of transactions.

The trustee’s payoff with a trustor of any type j he encounters in the future
equals P with probability Pr(8 > 9;) = 1 — F(¥;) and Ry with probability F(9;).
The trustee’s expected payoff for the equilibrium path, if he starts transactions with
a trustor of type ¢ equals

o
EU2(C»,6;9) = Ry + Y _ w'eill’pn = Ry + €i(TL, — D, (19)
t=1
where p is a n-vector with p; = F(9:)Rz + (1 — F(9:))P2.

Now the trustee deviates from the equilibrium path and abuses trust (D:).
The necessary condition for subgame-perfect equilibrium is that EUz(C2,6;9) 2
EU(Dz,0;9) for all § < ¥;. The involved trustor of course knows that trust has
been abused. The probabilities whether or not the following trustors will have the
information about the abuse of trust are given in matrix

Sinf Snoinf
Sing (T Im-7 (20)

Q = Snoinf 0 II ’

where T denotes the probabilities that a trustor who has information about abused
trust communicates this to the trustor in the following game (see equation (1)).
II — T are the probabilities that a trustor with information about abused trust does
not communicate this to the next trustor. IT are the probabilities for which trustor
will be involved in a following game after the information about abused trust is
lost.'®

The payoff for the trustee is Rz + 0 in the game in which he abuses trust; the
payoff will be P, as long as the trustee encounters trustors who know about this
deceit. As soon as information is not transmitted to the following trustor, the
payoffs are as if no trustor was ever deceived. This is the consequence of the fact
that information is lost among the trustors as soon as a new trustor who starts a
series of transactions does not obtain information from the foregoing trustor, and
the trustee knows that the trustors do not know anymore about his abuse of trust.

16 The stochastic matrix Q is a transition matrix of a Markov chain in which the states
are defined by which trustor has transactions with the trustee and whether this trustor has
information about trust abused by the trustee or not.
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Thus,

o mers e oy (%)
t=1

Ry+6+ (e 0) (Qw—1)< PZI ) (21)

By using TT, = T, — I and, II1, = I, — I, it follows by straightforward
computation that

(22)

-1
I I-wT —-w(II-T)
Q-1 = ( 0 I-wII ) -1
_ Tu  wTy(II- T, 1
- 0 I,
_ Ty I, —Ty 1
- I+ 2

By substituting (22) in (21):

EUy(D:,0;9) = Rz+0+ej(Ty—I)P1+ej(l, — Tuw)u
= Ry+0+ej(Tu —I)(Pol—p)+e(Il, —Du. (23)

Hence, EU(C3,0;9) > EU(D,, 8;9) is equivalent to

6 < ej(Tw—-I)(pu—P1)
(Rz2 — P)F(91)

e;('i‘w - I) :
(Rz2 — P2)F(9n)
= (B2 - Po)el(Tw - DF(). (24)
In equilibrium, (24) should hold for all 6 < ¥;: EU(Cs,6;9) > EU,(D»,6;9);
clearly 0 = (R — P)e}(Tw — I)F(19) is the most restrictive 6 for which the trustee

has no incentive to abuse trust placed by a trustor of type i. Consequently, the
threshold chosen by a trustor of type  should be smaller or equal to this value, i.e.,

9 < (Rz — Py)ei(Tw — D)F(¥) (25)
to ensure that the trustee never abuses trust. Because this holds for all ¢, the trigger
strategies are in equilibrium.

Remark. There is a small problem with ‘subgame perfectness’ in this game. As
long as trustors communicate information when a new trustor enters the game,
subgame perfectness is well defined. In that case, the trigger equilibrium is subgame
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perfect, because the actors act according the equilibrium in the constituent game
after leaving the equilibrium path, and this is also an equilibrium of the repeated
game. Note that to ensure subgame perfectness here, it was necessary to assume
that the trustee will continue to abuse trust after abusing trust once as long as the
trustors know about the abuse of trust, and, thus, that the trustee knows whether
trustors communicate information about the behavior of the trustee. If a trustor
enters the game and does not receive information from her predecessor, this trustor
does not know anything about what happened in the game before. She even does
not know how many rounds are already played. Thus, strictly speaking, the node in
which this trustor starts, and all nodes thereafter, cannot be considered as subgames
because there is a large set nodes that the game could have reached and that are
all in one information set for the new trustor. On the other hand, the trustor
cannot distinguish her situation from the first round in the game and, therefore,
from the viewpoint of the trustor the whole information set can be ‘collapsed’ to
one node. The only problem is that the trustee knows what happen in previous
rounds. But, because the trustee does not use the experiences he had in previous
rounds, we consider the round that starts with a trustor who is not informed about
the behavior of the trustee in earlier rounds as the start of a new game. For this
new game, the trigger equilibria are subgame-perfect equilibria. This finishes the
proof of the equilibrium condition.!”

Assertion i) states that there exists a unique Pareto optimal equilibrium in trigger
strategies (assertion ii)). First, we show that if inequality (25) is strict for a certain
threshold, there exists a Pareto dominant equilibrium in which equality holds. The
second step to prove assertion i) consists of a construction that shows that two
Pareto not-comparable equilibria thresholds are always Pareto dominated by another
equilibrium threshold. Suppose there exists a subgame-perfect equilibrium with
9 < (R2 — P2) z;;l(’i‘w —1);; F(9;) for at least one ¢. Then ¥; can be increased

until 9; = (Rz — P2) Z;;l(’i‘w —1);; F(9;) because the right side is bounded above

by 55—21—"_%)—’3 and monotonous increasing in 9;, while J; is not bounded above.

The other inequalities for j # 4 still hold because the right sides increase with
9;. In the next step, it has to be checked whether ¥;11 = (R2 — P2) Z;’___I(Tw -

I)i+1;F(¥;), otherwise J;41 can be increased until di41 > ¥iy1. Continue this
procedure until ¥, and start again from 91, etc. This gives an increasing sequence of
vectors Yassociated with equilibria in trigger strategies, which is bounded because
¥ < (—R—zl—':%&h”—, By the convergence theorem that bounded increasing sequences
converge (Akkermans/Van Lint 1970: 217), the sequence converges to a limit 9
where ¥; = (R2 — P2) E;;I(Tw —1I);; F(9;) for all i and the equilibrium associated
with the limit is a Pareto improvement of all equilibria found before.

17 Note that the discussion about subgame perfectness of the trigger equilibria is a
discussion about ‘subgames’ and not about ‘perfectness’. A reader who does not want to
consider a round starting with an uninformed trustor as the start of a new game should
introduce beliefs for the new trustor about the situation in which she enters the game. The
only way to introduce beliefs that are consistent with the strategies is that the game has
followed an equilibrium path. This implies that the trustor is convinced that trust is never
abused and, therefore, she will act as if she starts a new game.
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Now it has to be shown that there exists a unique 9* that Pareto dominates all
other equilibria in trigger strategies. Suppose that there are two Pareto dominant
equilibria 19and 9. Then there exists, possibly after relabeling, an [ such that

9; >0 for 1<i< and¥; <diforl<i<n (26)

Define Gi(9) = 9; — (R2 — P2) ). _,(Tw — I);;F(9;). Because F is a strictly

increasing function, Rz — P> > 0, and all matrix elements of (T, — I) are positive,
0G;/09; < 0if 7 # j. Then,

Gi(®1,...,01,9141,...9n) < Gi(¥1,...,92) =0, 1<i<l (27)
Gi(ﬂl,...,'ﬂl,'&[-}.l,--.'gn)SGi('&l,...,'&n)=0, l<i<n. (28)
Therefore, (¥1,...,91,9141,...0n) is a subgame-perfect equilibrium. This equilib-

rium Pareto dominates the equilibria considered before. Thus, from two Pareto
non-comparable equilibria, it is possible to construct a subgame-perfect equilibrium
that is a Pareto improvement of the two equilibria found before, contradicting that
Yand O were payoff dominant equilibria. Thus, it is impossible that two different
payoff dominant equilibria exist, which proves uniqueness.

Proof of Theorem 3 (page 57) The iterative algorithmic argument in the proof
of Theorem 2 implies that if for a certain change in the parameters a ¥; can be
increased, it is possible to construct a new subgame-perfect equilibrium that is a
Pareto improvement of the equilibria found before. Consequently, if one of the right
sides of the equations in (25) increases, it is possible to increase the corresponding
¥;. This implies that there exists a Pareto superior equilibrium. Therefore, the
comparative statics of J; can be derived from the following equation directly by
studying whether the right side of the equation increases or decreases in a certain
parameter, although ¥J; is only implicitly given in the equations.

9 = (Rz = P2) Yy _(Tw = i F(5}). (29)

j=1

Define H; = (Rz — P2) Y7 (Tw — I)i;F(9;). To prove i), note that F(§) > 0
and all matrix elements of T, — I are positive, so 5-(—5——‘;,— > 0, which implies
that the right side of (29) increases in Ry — P;. As stated before this is sufficient
to prove assertion i). Assertion ii) follows because %—'i;‘nﬂ = —’i‘wﬂ%}:’”—n’i‘w >0
element-wise and, therefore, %=t 6H' > 0. To prove iii), note that if (Ty)i; > 0 then

] Tw)i
—;‘-—1(—2—1 > 0; and, therefore, 2%i a 3, L > 0. This is exactly the case if a path exists

from a trustor of type ¢ to a trustor of type j. The argument for iv) is similar to
the argument for i17). Again, if a path exists from a trustor of type ¢ to a trustor of

type j, it holds that (Tw)” > 0, which implies that Z‘—l(—i)—”— > 0; and, therefore,

3’—’*— > 0. To prove v), define Fy and F> to be two probablhty distributions for

whlch Fy > F in the sense of stochastic ordering. Note that Rz — P, > 0 and all
matrix elements are positive. Consequently, H; increases for all ¢ changing from
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F, to F> and, Moreover, the proportion of games in which trust will be placed
increases because F1(¥7 ;) < Fa(d1;) < Fa2(93;) for all i, where 9] ; is the solution
for a trustor ¢ and Fj.

Proof of Theorem 4 (page 59) First, we prove that z;=1 (T-1); >33 (T-
I);; implies that ¥; > J2. To prove this assertion, assume that under the given
condition 9; < ¥2. Then the following inequalities hold.

9, = (Rz—Pz)E_l(Tw I)2; F(9;)
< (Rz—Pz)F(ﬁz)Z_l(Tw I)2; (30)
< (R —P)F(82) Y0 (Tw — Dy

The last strict inequality follows directly from y1 < 72. Therefore, (92,92) is a
feasible solution of the inequalities of Theorem 2 and from Theorem 2 it is known
that there exists a subgame-perfect equilibrium that is a Pareto improvement of the
equilibrium (92,92), which is already a Pareto improvement of (J1,92) and it still
can be improved because (30) is a strict inequality. This is in contradiction with
the fact that ¥ was the Pareto optimal solution. As a consequence, 1 > ¥2.

Now, to prove i), define in the transition matrix T T; = 1 —§ + 6 Dout(¢). Then,

_ T11 T1 - T11
T= ( Ty — T Ta2 ) ' (31)

Assuming that we have a subgame-perfect equilibrium for given T1: and T2, we
know that F(¥:1) > F(192), because by caqulatmg the matrix (T —I) it can be seen
immediately that Z _1(T I);; > Z, 1(T I)2;. It follows from straightforward

calculations that >0 fori=1,2and 4 < 0 for i = 1,2. That means that
we can find a subgame-perfect equilibrium tilat is a Pareto improvement of the
initial equilibrium by making T1; as large as possible and Ts2 as small as possible,
subject to T;; < 1— 6 + ém; and Tj; < dmj,i # j. The solution of the constrained
optimization process is provided in ).

To prove ii), define in the transition matrix T T; = 1 — § + 6 Dout(¢). Thus,

_ Tu T —Tn
T_<T1—T11 T —Th+Tn ) (32)
Assuming that we have a subgame-perfect equilibrium for given T1:, we know again
that F (1) > F(d2). It follows from straightforward calculations that —L > 0, but

—Tﬁ < 0. That means that the two types of trustors have conflicting mterests Using
that trustors of type 2 cannot force trustors of type 1 to give up contacts in their
own group for contacts with trustors of type 2, we obtain the equilibrium as given
in the theorem.

Proof of Theorem 5 (page 60) We prove assertion i) of the theorem mainly
with arguments from Theorem 4. First, we split the trustors in two groups, namely
trustors of type 1 and all the others. For this division a matrix T can be defined,
which has all the properties needed to apply Theorem 4. This means that for
optimization we have to maximize the first column, which can be done by taking all
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the original elements (before the division of the trustors in two groups) separately
optimal. Second, we keep the first column fixed and do the same by splitting the
whole population of trustors in two groups: the trustors of type 1 and 2 and all
the others. Again we have to maximize the first column, which means maximizing
the elements of the first two columns in the original matrix. The first column was
already fixed. Now the elements of second column have to be taken maximal.

The argument for assertion ¢z) is similar to that for part ¢). The difference is
that the trustor with higher numbers depend on types of trustors with lower indices
about how much contacts they will have with them.

Proof of Theorem 6 (page 61) Denote ¥*(A) = 9* and 9*(Ao) = 9§
(93, ...,95) by symmetry of the game in Ao. Furthermore, we define F(9*)
F(95)1 and the scalar 4 = (Rz — P2)f(95). Using the implicit function theorem,
the first order approximation of (3) is

19*

(Ra— Po)((T = wT)! - I)F(t‘)*)

(Rs = Po)(To — I+ wBo(T — To)To) (F85)1 + F95)(9" - 95) ) + ¢
9 + p(To — I)(9* = 93) + w(Rz — P2)F(95)To(T — To)Tol +e¢,

(33)

where € = O(A — Ay) is ‘small’ if the difference between A and Ay is ‘small’. By
straightforward multiplication, it can be verified that if z # %

-1 T
- =1 J 4
I-2J) t =) (34)
Therefore,
- -1
To = (I-wTo)™'= 1—11um (I— 1—1”12;1)‘])
_ 1 wng 35
—  l-wm (I+ 1~wn1—nwn2)‘]) (35)
= =2 (I+2273).

where {1 = wn: and {2 = wm — nwne. Note that {1 + nwnz = (2. Substituting (35)

and (I+ {#2J)1 = }=81 in (33) results in

9 = 95+ p(To—I)(W* —9})

(R2—Pp)wF(397)

e oo i 2 Lwng (36)
_
Rl ey ey (I+(11"—42)J) (T —To)l+e.

Using that 95 = u(To — I)9} and under the assumption that the inverse of I —
1(To — I) exists, it holds that

* (R2—P)wF(¥35) T -1
o = e (1-p(To - D)7 (14 253) (T-To)l +e. (37)
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Using (34) and (35) and more ‘tedious but straightforward calculation’, it follows
that

(I-p(To-D)~"

(I—#(i-l—cl(“l—w-ﬂc%'])‘l))—

1-¢

1 (38)
1-¢1(1+n)

-1
—_ pWN2
I (1—C1(1+#))(1—C2)J)

— 1-¢ pwn
= gam It (1—c1>><1—32(1+u))‘])'

Because this inverse matrix exists, the existence of the (1—,%) s guaranteed, which
ensures that we indeed could use the implicit function theorem. Furthermore, it
follows from the definitions of T and T that

(T - To)1 (((1 — oI+ %A) - ((1 _ oI+ %Ao)> 1
= $(A-Ap1 (39)

= § (Dout(A) - Dout(AO))'

By substituting (38) and (39) in (37), the expression for p; as defined in the theorem
follows directly:

dw(R2 — P2)F(9)

= . 40
P -G - GO+ ) (“0)
Using the same equations and some more calculus leads to
(1 + pwne
=t 41
2ET-GO+w )

The expression in terms of the outdegrees and density follow immediately from (39)
and the fact that nA = Y7 | Dout(3).

According to the definition of the transition matrix, 0 < {1 < {2 < 1. Because
all other parts of p; and p; are clearly positive, the signs of p; and p2 depend on the
magnitude of f(J95)(Rz2 — P2). The assumption that the distribution F is concave
and (6) ensures that

FO)(Re—Py) _1-G

p=f(9)(R2 — P2) < 9 G

(42)

This implies that 0 < {2(1 + p) < 1, which is sufficient to assure that p; and p, are
positive.
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