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Yongsheng Xu∗

Norm-Constrained Choices

Abstract: This paper develops a general and unified framework to discuss individ-
ual choice behaviors that are constrained by the individual’s internalized norms. We
propose a new notion of rationalizablity of a choice function that incorporates such
constraints, and axiomatically study several norm-constrained choice behaviors.

0. Introduction

When making choices from various situations, an individual is often confronted
with different internalized norms that put constraints on his choices. For ex-
ample, when presented with the last remaining apple in the fruit basket at a
dinner table, the individual may refrain from picking this last apple due to an
internalized rule of good behavior–never picking the last apple in the basket (Sen
(1993)). In a similar fashion, when faced with various sized slices of a birthday
cake on a table, the individual refrains from picking the largest slice of cake
since the individual has a “principle learned at his mother’s knee: ‘never pick
the largest slice of cake’ ” (Sen 1993). Norm-constrained choice behaviors have
been observed in other settings as well. For example, Rabin (1993) reports that
“a consumer may not buy a product sold by a monopolist at an ‘unfair’ price,
even if the material value to the consumer is greater than the price”, and Sen
(1988) observes that an individual chooses to read the official, government news-
paper when there are several daily newspapers available and yet refuses to read
the same official newspaper when other newspapers except the official one are
banned by the government (see also Gaertner and Xu 2004). In these settings,
by refusing to choose the only available option contained in the feasible set, the
individual expresses a protest arising from procedural considerations1: when the
procedure “producing” the feasible set is viewed as unacceptable, the individual
should register a protest by refusing to choose anything from this feasible set.
These norm-constrained choice behaviors are not just confined to some isolated
examples. Indeed, in the Chinese culture, according to Confucius’ teaching, an

∗ I am most grateful to Nick Baigent, Prasanta Pattanaik, Kotaro Suzumura, and especially
Wulf Gaertner for many fruitful discussions on related issues discussed in the paper over the
years. I would also like to thank Marlies Ahlert for her useful comments on an earlier version
of the paper.

1 See, for example, Hansson 1996, Suzumura 1999, and Suzumura and Xu 2001; 2003; 2006
for other procedural considerations in choice situations.
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individual when making choices should always strike a balance and choose the
median.

The norm-constrained choices cannot be easily explained by the conventional
choice theory, since they violate some very basic properties (e.g., the standard
contraction property requiring a chosen alternative from a set continue to be
chosen when the set shrinks and the initially chosen one is still available after the
shrinkage, and the non-emptiness of a choice set) for choices to be rationalizable
by a well-behaved preference relation. In the literature, there have been formal
attempts to study such norm-constrained choices (see, for example, Baigent and
Gaertner 1996, and Gaertner and Xu 1997; 1999a; 1999b; 2004). In each of
those studies, a specific framework is developed for a specific norm and there
seems a lack of a general and unified approach to study such norm-constrained
behaviors. The main purpose of this paper is to propose and develop a single and
unified framework that enables us to study norm-constrained choice behaviors.
The thrust of our framework is the following. The individual is modeled as
making sequential choices: first, the individual uses his internalized norms to
put constraints on feasible sets by rejecting alternatives that are deemed to
be non-choosable or unacceptable according to the norms; then, the individual
chooses the “best” alternative among those surviving the first stage’s rejection
according to a well-behaved binary relation. It is clear that our framework is
general enough to include the conventional choice theory as a special case in
which the individual does not reject any alternative in the first stage.

The structure of the remaining parts of the paper is as follows. In Section
1, we lay down our basic framework by presenting notation and definitions.
Section 2 is devoted to axiomatic properties observed choices may have. Results
are contained in Section 3. We conclude the paper in Section 4 by making several
observations.

1. Notation and Definitions

Let X be the finite set of alternatives. The elements in X will be denoted by
x, y, etc. Let K be the set of all subsets, including the empty set, of X. The
elements of K will be denoted by A,B, etc. A choice function C is a mapping
from K to K such that, for all A ∈ K, C(A) ⊆ A. Note that C(∅) = ∅ and that
we allow C(A) = ∅ for some non-empty A ∈ K.2 For simplicity, in this paper,
we confine our attention to the case in which #C(A) ≤ 1 for all A ∈ K; that is,
C(A) is either a singleton or the empty set.

Let R be a linear order (reflexive, transitive, complete and anti-symmetric)
overX. For all A ∈ K, if A 6= ∅, then we define G(A,R) =: {x ∈ A|xRy ∀y ∈ A},
and if A = ∅, then we define G(∅, R) = ∅. For any given linear order R, P is to

2The interpretation of an empty choice set is the following. When A 6= ∅ and C(A) = ∅, we
may say that the individual chooses nothing from A. In the standard literature of the theory
of choice, it is often assumed that C(A) 6= ∅ for any non-empty A. Aizerman and Aleskerov
1995 is an exception.
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denote its asymmetric part (xPy iff xRy and not(yRx)) and I is to denote its
symmetric part (xIy iff x = y).

A norm, to be denoted by N , is a mapping from K to K such that, for all
A ∈ K, N(A) ⊆ A. The interpretation of a norm N is the following. For
any non-empty A ∈ K, N(A) is regarded as the unacceptable alternatives of A
according to the individual’s internalized norm; or, alternatives in N(A) are not
choosable by the individual when the feasible set of alternatives is given by A.

In this paper, we consider the following four different internalized norms.
First, for a given linear order R over X and for any A ∈ K with #A ≥ 1, we
shall write A as {a1, a2, . . . , a#A} with a1Ra2R . . . Ra#A, and a1, . . . , a#A being
distinct. Now, a norm N : K → K is said to be

a modesty-based norm, to be denoted by Nmodesty, if there exists a linear order
over X such that, for all A ∈ K with #A ≥ 1, N(A) = {a1};

a median-based norm, to be denoted by Nmedian, if there exists a linear order
over X such that, for all A ∈ K with #A ≥ 2, N(A) = {a1, . . . , a#A/2} if
#A is even and N(A) = {a1, . . . , a(#A−1)/2} if #A is odd;

a protest-based norm, to be denoted by Nprotest, if for all A ∈ K, N(A) = {a ∈
A : C({a}) = ∅};

a weak protest-based norm to be denoted by Nw.protest, if for all A ∈ K, N(A) =
A if C({a}) = ∅ for all a ∈ A, and N(A) = ∅ if C({a}) 6= ∅ for some a ∈ A.

We now introduce a general notion of rationalizability of a choice function.
A choice function C is said to be norm-constrained rationalizable if there exist
a linear order R over X and a norm N over K such that, for all A ∈ K, C(A) =
G(A \N(A), R).

Combined with our four norms introduced earlier, we have the following no-
tions of norm-constrained rationalizability of a choice function: A choice function
C is said to be

(i) modesty-norm-constrained rationalizable, if there exist a linear order R over
X and a norm N such that, for all A ∈ K, N(A) = Nmodesty(A) and
C(A) = G(A \N(A), R);

(ii) median-norm-constrained rationalizable if there exist a linear order R over
X and a norm N such that, for all A ∈ K, N(A) = Nmedian(A) and
C(A) = G(A \N(A), R);

(iii) protest-norm-constrained rationalizable if, if there exist a linear order R
over X and a norm N such that, for all A ∈ K, N(A) = Nprotest(A) and
C(A) = G(A \N(A), R);

(iv) weakly protest-norm-constrained rationalizable if, if there exists a linear or-
der R overX and a norm N such that, for all A ∈ K, N(A) = Nw.protest(A)
and C(A) = G(A \N(A), R).
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It may be noted that the notion of modesty-norm-constrained rationalizabil-
ity is similar to the notion of rationalizability used by Baigent and Gaertner
(1996). The only difference is that, in theirs, N({x}) = ∅ for any x ∈ X while
in ours, N({x}) = {x} for any x ∈ X. Our notion of median-norm-constrained
rationalizability is similar to the notion of rationalizability of a choice function
by the median studied in Gaertner and Xu (1999b). The difference is that,
in their framework, the choice set of a feasible set containing an even number
of alternatives contains the two “median” alternatives in the set, while in our
approach, the choice for such a feasible set is always the “lower-median” al-
ternative. For example, suppose x, y, z and w are ordered ascendingly. Then,
according to Gaertner and Xu (1999b), C({y, z}) = {y, z} = C({x, y, z, w}),
while according to our notion of the median-norm-constrained rationalizability,
C({x, y, z, w}) = {y} = C({y, z}). Our protest-norm-constrained rationalizabil-
ity and weakly protest-norm-constrained rationalizability correspond, respec-
tively, to the P -rationalizability and LP -rationalizability studied in Gaertner
and Xu (2004), though, in their framework, Gaertner and Xu (2004) take norms
as given, and in our framework, norms are revealed. Finally, we may note that
the standard rationalizability of a choice function becomes a special case of our
norm-constrained rationalizability in which N(A) = ∅ for all A ∈ K.

2. Axioms

Emptiness of Singleton Choice Situations (ESCS): For all x ∈ X, C({x}) =
∅.

Non-Emptiness of Singleton Choice Situations (NESCS): For all x ∈ X,
C({x}) = {x}.

Non-Emptiness of Non-singleton Choice Situations (NENCS): For all
A ∈ K with #A ≥ 2, C(A) 6= ∅.

Non-Emptiness of Non-Protest Situations (NENPS): For all A ∈ K, if
there exists x ∈ A such that C({x}) 6= ∅, then C(A) 6= ∅.

Constrained Contraction Consistency (CCC): For all A ∈ K with #A ≥ 3,
there exists a∗ ∈ A with {a∗} 6= C(A) such that, for all A1, A2 ⊆ A, if
a∗ ∈ A1 ⊆ A2 and C(A2) ⊆ A1, then C(A1) = C(A2).

Restricted Contraction (RC): For all A,B ∈ K and all x ∈ X, if x ∈ B ⊆ A,
then [C(A) ⊆ B and C(B) 6= ∅]⇒ C(A) = C(B).

Anti-Unanimity (AU): For all distinct x, y, z ∈ X, if {x} = C({x, y}) =
C({x, z}), then {x} 6= C({x, y, z}).

Consistency of a Revealed Norm (CRN): For all A ∈ K, and all x ∈ A,
if {x} 6= C(A) and {x} 6= C({x ∪ C(A)}), then, for all y ∈ A \ {x},
{x} 6= C({x, y}).
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Independence of Rejected Alternatives (IRA): For all A ∈ K with #A ≥
3, there exist distinct x, y ∈ A such that C(A) ∩ {x, y} = ∅ and C(B) =
C(B \ {x, y}) for all B ⊆ A.

Minimal Consistency of Rejection (MCR): For all distinct x, y, z ∈ X, if
{x} 6= C({x, y, z}) and {x} 6= C({x, y}), then {x} 6= C({x, z}).

Strong Protest Consistency (SPC): For all x ∈ X, all A ∈ K, if x 6∈ C({x}),
then x 6∈ C(A ∪ {x}).

Weak Protest Consistency (WPC): For all A ∈ K, all x ∈ X\A, if C({x}) =
∅ and C(A) = ∅, then x 6∈ C(A ∪ {x}).

ESCS stipulates that the choice set of a singleton feasible set is always empty. As
the discussion in the Introduction may indicate, when an individual has a rule
of good behavior, or a sense of protest, this may happen. NESCS, on the other
hand, requires that the choice set of a singleton feasible set is always non-empty.
This is in accordance with the conventional choice behavior. NENCS simply
requires that every non-empty and non-singleton feasible set has a non-empty
choice set. This again is the standard assumption made for conventional choice
behavior. NENPS requires the choice set of a feasible set containing at least one
‘non-protest’ alternative (the choice set from the singleton set containing this
alternative is the singleton set itself) be non-empty.

CCC is a restricted version of the conventional contraction property and
requires the conventional contraction property to hold with reference to a fixed
alternative–as long as this fixed alternative continues to be available after a
shrinkage of a set, the choice from the larger set should coincide with the choice
from the smaller set. The fixed alternative can thus be viewed as a reference
alternative based on which the choice is made from a set of available alternatives.
Take, for example, the choice behavior of never choosing the uniquely largest slice
of cake. The reference alternative in this kind of behavior is the largest slice of
cake–as long as the largest slice continues to be available, the choice behavior
would be similar to the conventional one. RC is yet another restricted version of
the conventional contraction property and requires a chosen alternative from a
set A continue to be chosen when A shrinks to a subset B as long as the initial
chosen alternative is still available in B and the choice set of B is non-empty.

AU stipulates that, if x is the uniquely chosen alternative in pairwise com-
parison between x and y, and between x and z, then x should not be chosen
from the larger set containing x, y and z. A similar but slightly stronger axiom
than AU is proposed in Baigent and Gaertner (1996). AU is in sharp contrast
with the conventional axiom of γ (see, for example, Sen 1977), which requires
that an alternative a be chosen from the set containing a, b and c whenever a
is chosen in pairwise comparisons between a and b and between a and c. The
idea that AU tries to capture seems to be that norms are context dependent.
When, for example, x is the smaller slice of cake in comparisons with each of
any other slices of cake on the table, a norm based on modesty would call for
the individual to pick up the smaller one over the larger one if they are the only
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two slices on offer. However, when presented with three slices, by not picking
up x, the smallest slice, the individual can still behave modestly.

CRN requires that, if x is not chosen from a set A and from a set containing
the chosen alternative from A and x, then x should not be chosen from any
doubleton set containing any alternative from A and x. In some sense, CRN
reflects a consistency of a revealed norm. IRA says that, for any set A containing
three or more alternatives, there always exist two alternatives such that each is
not the chosen alternative from A and the deletion of them from A will not
affect choices. MCR stipulates that, if x is not the chosen alternative from
the set {x, y, z} and from the set {x, y}, then x cannot be chosen from the set
{x, z}. SPC requires that a protest alternative will never be chosen from any
set A. WPC is weaker than SPC and requires that the addition of a protest
alternative to a set A will not make it choosable as long as the choice set of A
is empty.

3. Results

Theorem 1. A choice function C is modesty-norm-constrained rationalizable if
and only if it satisfies axioms ESCS, NENCS, CCC, AU and CRN.
Proof. It can be checked that if a choice function C is modesty-norm-constrained
rationalizable, then it satisfies axioms ESCS, NENCS, CCC, AU and CRN.
Therefore, we have only to show that if a choice function C satisfies ESCS,
NENCS, CCC, AU and CRN, then it is modesty-norm-constrained rationaliz-
able.

Let C be a choice function that satisfies ESCS, NENCS, CCC, AU and CRN.
By NENCS, for all distinct x, y ∈ X, C({x, y}) 6= ∅. Define the binary relation
R over X as follows: for all distinct x, y ∈ X, xIx, and xPy iff {y} = C({x, y}).
Clearly, R is reflexive, complete and anti-symmetric. To show that R is transi-
tive, we consider distinct x, y, z ∈ X such that xPy and yPz. From the definition
of R, we must have {y} = C({x, y}) and {z} = C({y, z}). We need to show that
xPz, that is, {z} = C({x, z}). Suppose to the contrary that {z} 6= C({x, z}).
By NENCS, it must be true that {x} = C({x, z}). By NENCS, C({x, y, z}) 6= ∅.
Let C({x, y, z}) = {a}, where a ∈ {x, y, z}. By CCC, there exists a∗ ∈ {x, y, z}
such that a∗ 6= a and {a} = C({a∗, a}). Consider the the following three cases
that exhaust all possibilities: (i) a∗ = x; (ii) a∗ = y; and (iii) a∗ = z.

(i) a∗ = x. In this case, by CCC, a = y or a = z. If a = y, that is,
C({x, y, z}) = {y}, then, by CRN, noting that x 6= y = C({x, y, z}) and {x} 6=
C({x, y}), we would have C({x, z}) 6= {x}, a contradiction. If a = z, that
is, C({x, y, z}) = {z}, then, by CCC, it would follow that C({x, z}) = {z}, a
contradition.

(ii) a∗ = y. In this case, by CCC, a = x or a = z. If a = x, that is,
C({x, y, z}) = {x}, then, by CCC, it would follow that C({x, y}) = {x}, a
contradition. If a = z, then, by CRN, noting that {y} 6= C({x, y, z} and {y} 6=
C({y, z}), it would follow that C({y, x}) 6= {y}, a contradiction.
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(iii) a∗ = z. In this case, by CCC, a = x or a = y. If a = x, then, by
CRN, noting that {z} 6= C({x, y, z}) and {z} 6= C({x, z}), it would follow that
{z} 6= C({y, z}), a contradiction. If a = y, then, by CCC, it would follow that
C({y, z}) = C({x, y, z}) = y, a contradiction.

In each of the cases (i), (ii), (iii), we would derive a contradiction. Therefore,
it must be true that xPz. We have thus shown that the binary relation R is a
linear order.

Let the linear order R over X be defined as above. For any non-empty A ∈ K,
let A = {a1, . . . , am} be defined as in Section 2. We show that, for every A ∈ K,
C(A) = G(A \N(A), R), where N(A) = {a1}. Consider first that #A = 1. By
ESCS, C(A) = ∅. On the other hand, N(A) = A = {a1} implying A\N(A) = ∅.
Therefore G(A \N(A), R) = ∅, which implies that C(A) = G(A \N(A), R) for
all A ∈ K with #A = 1. Next, if #A = 2, from the definition of R, we obtain
that C(A) = {a2} = G(A \ N(A), R) where N(A) = {a1}. Consider therefore
#A ≥ 3. We first note that a1 is such that {a1} 6= C(A) and C(A) = C(A1)
for any A1 ⊆ A with a1 ∈ A1 and C(A) ⊆ A1. For, otherwise, for some
a∗ ∈ A with a∗ 6= a1, by CCC, we would have {a∗} 6= C(A) = C({a∗} ∪ C(A));
by CRN, it would then follow that {a∗} 6= C({a∗, a1}), a contradiction with
C({a∗, a1}) = {a∗}. Let C(A) = {a}. Note that a 6= a1. If a 6= a2, then,
by CCC and from above, we would have C({a, a1, a2}) = {a}. Note that, on
the other hand, {a} = C({a, a1}) and {a} = C({a, a2}). By AU, it would
follow that {a} 6= C({a, a1, a2}), a contradiction. Therefore, C(A) = {a2} =
G(A \N(A), R), where N(A) = {a1}.

In summary, we have shown that if C satisfies ESCS, NENCS, CCC, AU and
CRN then it is modesty-norm-constrained rationalizable.

Theorem 2. A choice function C is median-norm-constrained rationalizable if
and only if it satisfiefs axioms NESCS, NENCS, AU, IRA, and MCR.
Proof. It can be checked that if a choice function C is median-norm-constrained
rationalizable, then it satisfies axioms NESCS, NENCS, AU, IRA, and MCR.
Therefore, we have only to show that if a choice function C satisfies NESCS,
NENCS, AU, IRA, and MCR, then it is median-norm-constrained rationalizable.

Let C be a choice function that satisfies NESCS, NENCS, AU, IRA, and
MCR. We first note that, by NESCS and NENCS, for all A ∈ K with A 6= ∅,
C(A) 6= ∅. Define the binary relation R over X as follows: for all x, y ∈ X,
xPy iff {y} = C({x, y}), and xIy iff x = y. Clearly, R is reflexive, complete and
anti-symmetric. To show that R is transitive, we consider distinct x, y, z ∈ X
such that xPy and yPz; that is, {y} = C({x, y}) and {z} = C({y, z}). We
need to show that xPz, or {z} = C({x, z}). Suppose to the contrary that {z} 6=
C({x, z}), that is, {x} = C({x, z}). Consider C({x, y, z}). If C({x, y, z}) = {x},
then, by MCR and noting that {z} 6= C({x, y, z}) and {z} 6= C({x, z}), it would
follow that {z} 6= C({y, z}), a contradiction. If C({x, y, z}) = {y}, then, by
MCR and noting that {x} 6= C({x, y, z}) and {x} 6= C({x, y}), it would follow
that {x} 6= C({x, z}), a contradiction. If C({x, y, z}) = {z}, then, by MCR
and noting that {x} 6= C({x, y, z}) and {x} 6= C({x, y}), it would follow that
{x} 6= C({x, z}), a contradiction. Therefore, C({x, y, z}) = ∅, a contradiction.
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Consequently, C({x, z}) = {z} showing that R is transitive. Therefore, R is a
linear order.

We now show that C(A) = G(A \ N(A), R) for all A ∈ K where N(A) =
Nmedian(A). From the definition of R, it is trivial to check that C(A) =
G(A \ Nmedian(A), R) for all A ∈ K with #A ≤ 2. Consider A ∈ K with
#A = 3. Let A = {x, y, z} with xPyPz. From xPyPz, we have {y} =
C({x, y}), {z} = C({y, z}) and {z} = C({x, z}). AU implies that {z} 6=
C({x, y, z}). If C({x, y, z}) = {x}, by MCR and noting that {y} 6= C({x, y, z})
and {y} 6= C({y, z}), we would obtain {y} 6= C({x, y}), a contradiction. There-
fore, C({x, y, z}) = {y} = G({x, y, z} \Nmedian({x, y, z}), R). Now, for any A ∈
K with #A ≥ 4, by IRA, there exist distinct x, y ∈ A such that C(A)∩{x, y} = ∅
and C(B) = C(B \ {x, y}) for all B ⊆ A. Note that C({x, y, a}) = {a} for all
a ∈ A \ {x, y}. From the above, it must be true that {x, y} = {a1, a#A}. With-
out loss of generality, let x = a1 and y = a#A. Now, by the repeated use of IRA,
it can be checked that C(A) = G(A \Nmedian(A), R).

In summary, we have shown that C is median-norm-constrained rationaliz-
able.

Theorem 3. A choice function C is protest-norm-constrained rationalizable if
and only if it satisfies axioms SPC, NENPS and RC.
Proof. It can be checked that if a choice function C is protest-norm-constrained
rationalizable, then it satisfies axioms SPC, NENPS and RC. Therefore, we have
only to show that if a choice function C satisfies SPC, NENPS and RC, then it
is protest-norm-constrained rationalizable.

Let C be a choice function that satisfies SPC, NENPS and RC. Let X1 =
{x ∈ X : C({x}) = ∅}. If X1 = X, then define, for each A ∈ K, N(A) = A.
Note that in this case we have C({x}) = ∅ for all x ∈ X. Then, for any linear
order R, we have G(A \ N(A), R) = ∅. On the other hand, from C({x}) = ∅
for all x ∈ X, by SPC, we obtain that, for all A ∈ K, C(A) = ∅. Therefore,
C(A) = G(A \ N(A), R) for any linear order R. If X1 6= X, then the set
X2 = X \X1 = {x ∈ X : C({x}) = {x}} 6= ∅. For each A ∈ K, let N(A) = {a ∈
A : a ∈ X1}. Let X1 = {x11, . . . , x1p}. Define the binary relation R over X as
follows: for all x, y ∈ X,

xIy iff x = y;

xPy if [x, y ∈ X2 and {x} = C({x, y})] or [x ∈ X2 and y ∈ X1] or
[x, y ∈ X1, x = x1i, y = x1j and i > j].

From the definition of R, R is reflexive, complete and anti-symmetric. We now
check that R is transitive. Let distinct x, y, z ∈ X be such that xPy and yPz.
We need to show that xPz. Suppose to the contrary that not(xPz). Then, we
would have zPx. There are three cases: (i) x, z ∈ X2 and {z} = C({x, z}); (ii)
z ∈ X2 and x ∈ X1; and (iii) x, z ∈ X1 with z = x1i, x = x1j and i > j. In
(i), from z ∈ X2 and {y} = C({y, z}), by SPC, we would obtain C({y}) 6= ∅.
Therefore, x, y, z ∈ X2 in this case. Consider C({x, y, z}). It can be checked
that, by RC, any of the following, C({x, y, z}) = {x}, C({x, y, z}) = {y}, and
C({x, y, z}) = {z}, would lead a contradiction. As a consequence, in this case,
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we would have C({x, y, z}) = ∅, a contradiction with NENPS. In case (ii), from
z ∈ X2 and {y} = C({y, z}), by SPC, we would obtain C({y}) 6= ∅, that is,
y ∈ X2, leading an immediate contradiction with xPy and x ∈ X1. Finally, in
case (iii), x ∈ X1 and xPy would imply that y ∈ X1 with y = x1k and j > k, and
yPz would then imply k > i, an immediate contradiction with i > j. Therefore,
we must have xPz, proving the transitivity of the binary relation R, and the
linearity of R.

To complete the proof of Theorem 3, we show that, for all A ∈ K, C(A) =
G(A\Nprotest(A), R). Let A ∈ K. We first observe that, for any x ∈ Nprotest(A),
by SPC, x 6∈ C(A). If C(A) = ∅, by SPC and NENPS, it must be the case that
Nprotest(A) = A. Then, G(A \ Nprotest(A), R) = ∅. Similarly, when G(A \
Nprotest(A), R) = ∅, indicating that Nprotest(A) = A, by SPC, C(A) = ∅ follows
easily. If C(A) = {a}, then {a} = C({a}). Then, Nprotest(A) 6= A, and G(A \
Nprotest(A), R) 6= ∅. If {x} = G(A \ Nprotest(A), R) and x 6= a, by RC and
noting that C(A) = {a} and {a} = C({a}), we would have C({x, a}) = {a},
implying that aPx, a contradiction to {x} = G(A \ Nprotest(A), R) and x 6= a.
Therefore, a = x. Similarly, when {x} = G(A \ Nprotest(A), R), it must be
true that {x} = C({x}). If C(A) = {a} and a 6= x, by SPC, we would have
{a} = C({a}), and by RC, we would then have C({x, a}) = {a}, a contradiction
with {x} = G(A \Nprotest(A), R) and a 6= x. Therefore, a = x. In sum, we have
established that, for all A ∈ K, C(A) = G(A \ Nprotest(A), R), completing the
proof of Theorem 3.

Theorem 4. A choice function C is weakly protest-norm-constrained rational-
izable if and only if it satisfies axioms WPC, NENPS and RC.
Proof. It can be checked that if a choice function C is weakly protest-norm-
constrained rationalizable, then it satisfies axiomsWPC, NENPS and RC. There-
fore, we have only to show that if a choice function C satisfies WPC, NENPS
and RC, then it is weakly protest-norm-constrained rationalizable.

Let C be a choice function that satisfies WPC, NENPS and RC. If C({x}) = ∅
for all x ∈ X, then define the norm N(A) = A for all A ∈ K, and for any linear
order R, we must have C(A) = G(A \ N(A), R) since, by the repeated use of
WPC, C(A) = A for all A ∈ K. Therefore, let X be such that C({x}) = {x}
for at least one x ∈ X. By NENPS, it then follows that C(X) 6= ∅. Let
C(X) = {x1}. Consider the following subsets of X:

X1 = X \ {x1},
X2 = X1 \ C(X1) if C(X1) 6= ∅ and X2 = X1 if C(X1) = ∅,
X3 = X2 \ C(X2) if C(X2) 6= ∅ and X3 = X2 if C(X2) = ∅,
. . .
X#A = X#A−1 \ C(X#A−1) if C(X#A−1) 6= ∅ and X#A = X#A−1

if C(X#A−1) = ∅.
We note that, if, for some k, C(Xk) 6= ∅ and C(Xk+1) = ∅, then Xj = Xk+1 for
all j ≥ k + 1. Let k0 be such that C(Xk0) = ∅ and C(Xk0−1) 6= ∅. If Xk0 6= ∅,
let Xk0 = {a1, . . . , am}. Define a binary relation R over X as follows: for any
distinct x, y ∈ X,

xIx,
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xPy if [{x} = C(Xi), {y} = C(Xj) and i < j] or [{x} = C(Xi),
y ∈ Xj and C(Xj) = ∅] or [x, y ∈ Xk0 , x = ai, y = aj , and i < j].

From the definition, it can be checked that the binary relation R is reflexive,
complete, anti-symmetric and transitive. We now show that, for any A ∈ K,
C(A) = G(A \ Nw.protest(A), R). Let A ∈ K. If A is such that C({x}) = ∅ for
all x ∈ A, then, by WPC, C(A) = ∅. Note that Nw.protest(A) = A. On the
other hand, G(A \Nw.protest(A), R) = G(∅, R). Therefore, in this case, C(A) =
G(A \Nw.protest(A), R). If A is such that, for some x ∈ A, C({x}) = {x}, then
C(A) 6= ∅ andNw.protest(A) = ∅. Let {a} = C(A), and G(A\Nw.protest(A), R) =
{x}. We need to show that a = x. Suppose to the contrary that x 6= a.
Then, since G(A \ Nw.protest(A), R) = G(A,R) = {x} and a ∈ A, we must
have xPa. From the definition of R, from xPa, we must have either (i) {x} =
C(Xi), {a} = C(Xj) and i < j; or (ii) {x} = C(Xi), a ∈ Xj and C(Xj) = ∅; or
(iii) x, a ∈ Xk0 , x = ai, a = aj , and i < j. In (i), we first note that Xj ⊂ Xi and
Xi 6= Xj . If A ⊆ Xi, then, by noting that C(A) 6= ∅ and from RC, we obtain
{x} = C(A), a contradiction. If Xi ⊆ A, then by noting that C(Xi) 6= ∅ and
from RC, we obtain C(Xi) = {a}, a contradiction. If A is not subset of Xi and
Xi is not a subset of A, then D = (A \ Xi) ∪ (Xi \ A) 6= ∅. For each y ∈ D,
from the construction of X1, X2, . . ., it must be the case that {y} = C(Xk(y))
for some k(y) with k(y) < i. Let k(y∗) be the smallest integer among those
k(y). Note that A ⊆ Xk(y∗) and Xi ⊂ Xk(y∗). By RC, it then follows that
{y∗} = C(A). If y∗ = a implying that aPx, we obtain the contradiction with
xPa; if y∗ 6= a, then, by RC, it follows that {y∗} = C(A), a contradiction
with C(A) = {a}. Therefore, case (i) is not possible. In case (ii), again, when
A ⊆ Xi or Xi ⊆ A, we obtain immediate contradictions. Therefore, consider
D = (A\Xi)∪(Xi\A) 6= ∅. Then, by following a similar argument as in case (i),
we obtain a contradiction. Therefore, case (ii) is not possible. Finally, in case
(iii), since C(A) 6= ∅, we must have y ∈ A with C({y}) 6= ∅. Let k(y∗) ∈ A be
such that {y∗} = C(Xk(y∗)) and A ⊆ Xk(y∗). From the construction, k(y∗) < i,
so that y∗ 6= x and y∗Px, a contradiction. Therefore, case (iii) is not possible.
On the other hand, the above three cases exhaust all possibilities. Therefore,
x = a, completing the proof of Theorem 4.

4. Conclusion

In this paper, we have proposed a general and unified framework to study norm-
constrained choice behaviors. In this framework, we have introduced a general
notion of norm-constrained rationalizability of a choice function. Our notion of
rationalizability is general enough to include the conventional notion of rational-
izability of a choice function as a special case in which the norm is characterized
by N(A) = ∅ for all non-empty feasible set A. With our notion of rational-
izability of a choice function, we have studied several concepts of specifically
norm-constrained choices axiomatically.

To conclude the paper, we note that there have been some attempts in the
literature recently on sequential rationalizability of a choice function. For ex-
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ample, Manzini and Mariotti (2005) introduce a notion of rationalizability of
the following type to study cyclic choice behaviors: a choice function C is ra-
tionalizable if there exist two orderings (an ordering is a reflexive, complete and
transitive binary relation), R1 and R2, such that C(A) = G(G(A,R1), R2) for
all non-empty A ∈ K. Clearly, this notion of rationalizability is quite different
from ours. The motivation of their study is also quite different from ours.
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