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On Measuring Personal Connections and the
Extent of Social Networks∗

Abstract: The notions of personal connection and social networks are key ingredients
of the increasingly important concept of social capital in social sciences in general and
in economics in particular. This paper discusses the problem of measuring personal
connection and the extent of social networks that may exist in a society. For this
purpose we develop several conceptual and analytical frameworks. In the process, we
axiomatically characterize several measures of personal connection and social networks.

0. Introduction

The purpose of this paper is to develop measures of the extent of social networks
that may exist in a society. In the process, we also develop measures of the
degree of personal connection between two individuals, the notion of personal
connection between individuals being the conceptual basis of our notion of social
networks.

The concept of social networks is one of three key concepts, trust, norms and
networks, which have been the focus of a number of important contributions
by sociologists (see, among others, Putnam (1993; 1995) and Coleman (1990;
2000) and economists (see, for example, Stiglitz 2000 and Dasgupta 2000) in the
literature on ‘social capital’. While it is not entirely clear that ‘social capital’
is the most appropriate term for describing collectively these three elements,
there seems to be general agreement that they have important consequences for
the functioning of a society. For example, social networks may make a person’s
life richer and happier (thus serving as a ‘consumption good’). They can facil-
itate transactions and cooperative ventures by building trust, and can serve as
conduits for the flow of information. They can also serve as a type of informal
insurance insofar as one may fall back on one’s personal connections in the case
of certain emergencies. Of course, social networks need not always play a benign
role: social networks can be used to oppress those outside the network and to
promote factionalism.

Despite the increasing attention that the concept of social networks as a com-
ponent of social capital has recently received, there does not seem to be much

∗ We are indebted to Thomas Kelly and Sunder Ramaswamy for introducing us to the
literature on social capital. For helpful comments we are grateful to Marlies Ahlert, Kaushik
Basu, Rajat Deb, Wulf Gaertner, Michael Jones, Marc Kilgour, and Joyashree Roy.
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formal treatment of the issue of measuring the extent of social networks.1 In
this paper, we develop an approach to the problem of measuring social networks.
In doing so, we also derive measures of personal connection between individu-
als. Since our focus is the problem of measuring personal connection between
individuals and the extent of social networks that already exist in a society, we
take these connection and networks as given and do not discuss how they come
into existence (for a discussion of how social networks evolve, see, among others,
Dutta and Jackson 2001). It may be worth noting that, our measures of per-
sonal connection and social networks are ‘descriptive’ in character: they do not
involve any judgement about whether personal connection and social networks
promote individual and/or social welfare.

Our analysis proceeds in two stages. First, we discuss the problem of mea-
suring personal connection between two individuals. In our framework, this is
necessary for measuring the extent of social networks. As Scott (1991, 3) ob-
serves, the analysis of social network must be based on relational data, “the
contacts, ties and connections, the group attachments which relate one individ-
ual to another, and so cannot be reduced to the properties of the individual
agents themselves”. Intuitively, our notion of personal connection between two
individuals reflects the friendly relation that may exist between the two individ-
uals directly or indirectly: the two individuals may have a direct friendly relation
or they may have friends who know of each other through their friends. Either
way, one can think of a benign chain of friends linking these two individuals.
From this perspective, the measurement of the degree of personal connection
between two individuals involves an examination of the set of all benign chains
between them. Using this intuition, we first axiomatically characterize two mea-
sures of the degree of personal connection between two individuals based on the
length of the shortest benign chains between them (as we note in Remark 1.2
below, our notion of a shortest benign chain is closely related to the notion of
a geodesic in the literature on social networks, though the two concepts are not
identical). These measures have an interesting feature: the degree of personal
connection between two individuals is (weakly) inversely related to the length
of the shortest benign chains. We then characterize several other measures of
personal connection, using the specific interpretation of personal connection as a
means of transmitting messages. These other measures capture the idea that be-
nign chains are conduits of messages from one person to another and that, when
a message is transmitted indirectly from one person to another via a benign
chain, it gets diluted at each successive stage in the transmission process.

In the second stage of our analysis, we develop measures of social networks,
using personal connections between individuals as building blocks. We view the
problem of measuring social networks as a problem of aggregation, namely the
aggregation of personal connections for all pairs of distinct individuals in the

1 There have been a number contributions investigating conceptually and empirically the
relevance of social capital to economics and the measurement of trust and trustworthiness–two
key components of social capital. See, for example, Bowles and Gintis 2002; Durlauf 2002;
Glaeser, Laibson and Sacerdote 2002; Glaeser, Laibson, Scheinkman and Soutter 2000; Knack
and Keefer 1997; LaPorta, Lopez-de-Salanes, Shleifer and Vishny 1997.
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society. This procedure fits in well with some suggestions for the measurement
of social networks that one finds in the literature. Indeed, as Marsden (1990)
indicates, network range, the strength of personal connections, network size and
density are some of the indicators of the extent of social networks. Many of
these indicators are incorporated in our procedure of measuring the degree of
personal connections for each pair of distinct individuals in the society and then
aggregating these personal connections to arrive at a measure of social networks.
We show that, under certain plausible conditions, the extent of social networks
existing in a society is the simple sum of the degrees of personal connections for
all pairs of distinct individuals in the society.

The plan of our paper is as follows. In Section 1, we present the basic notation
and definitions. In Section 2, we axiomatically characterize some measures of
the degree of personal connections between two individuals. Section 3 proposes
and axiomatically characterizes some measures of the extent of social networks
in a given society. We conclude in Section 4. Proofs of our results are organized
in Appendices A, B, and C.

1. Basic Notation and Definitions

Let N = {1, 2, · · · , n} be a community of n ≥ 3 individuals. Let R and R(−) be
two binary relations defined over N , such that: (i) R is reflexive and symmetric;
(ii) R(−) is irreflexive and symmetric; and (iii) for all i and j in N , iRj implies
not[iR(−)j].2 For reasons that will be obvious from the interpretations attached
to R and R(−), R and R(−) are not assumed to be either necessarily connected
or necessarily transitive. The interpretation of R is as follows. For all i and j in
N , iRj denotes “i has a good relation with j”3. Similarly, iR(−)j denotes that
i has a hostile relation with j.4

Note that, under our specification, not(iRj) does not necessarily imply iR(−)j:
two individuals i and j may have neither a good relation nor a hostile relation
between them. When iRj, i and j have a direct (benign) personal connection.

2 The two binary relations, R and R(−), constitute the basic building blocks of our formal
model. It has been suggested to us that some of the things that we do in terms of R and
R(−) could be couched in the language of graph theory. However, we have not followed this
suggestion for two reasons. First, we found that, by using the graph-theoretic language, we
would not gain much in terms of economy in our exposition. Secondly, we felt that, compared
to an exposition in terms of graph theory, our present exposition may have the advantage of
being accessible to a wider group of social scientists.

3 Some of our colleagues have occasionally raised questions about the symmetry of the
relation “has a good relation with”. It has been pointed out to us that a ‘similar’ binary relation,
“is in love with” is not necessarily symmetric. While symmetry is certainly an assumption of
doubtful validity in the case of the binary relation “is in love with”, the situation seems to be
very different for the binary relation “has a good relation with”. The assumption that, if i has
a good relation with j, then j must have a good relation with i, seems very plausible to us.
Similarly, we find it compelling to assume that the binary relation “has a hostile relation with”
is symmetric.

4 The data relating to our two binary relations, R and R(−), can be collected by the Moreno
1934 procedure, familiar in social network analysis. Moreno 1934 used a form of his sociometric
experiment to record not only friendship but enmity as well.
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However, even if i may not have any direct personal connection with j, i may
have a good relation with someone who, in turn, may have a good relation with
j. Indeed, in general, one can think of a “good relation chain” linking i and j
through a series of individuals functioning as intermediaries between i and j.5
In the absence of a direct personal connection between i and j, “such a good
relation chain” or indirect personal connection can, to some extent, serve some of
the desirable or undesirable purposes that a direct (benign) personal connection
does. An indirect personal connection can enrich a person’s life, though to a
lesser extent than a direct personal connection. An indirect personal connection
can also promote trust and facilitate economic transactions. It can also act as
a conduit for the flow of information, though it would, presumably be a less
effective conduit than a direct personal connection. Finally, in case of necessity,
one can also appeal to another individual for help, using an indirect personal
connection. These considerations provide the motivation for our next definition.

Definition 1.1: For all distinct i and j, we say that there exists a benign chain
from i to j iff there exists a positive integer t (t ≤ n) such that, for some
m(1), · · · ,m(t) in N , we have:

(1.1.1) m(1) = i,m(t) = j;

(1.1.2) m(1), ...,m(t) are all distinct;

(1.1.3) for every positive integer k < t,m(k)Rm(k + 1);

(1.1.4) for all i′ and j′ in {m(1), ...,m(t)}, not[i′R(−)j′].

Given such m(1), · · · ,m(t), we call the finite sequence (m(1), · · · ,m(t)) a
benign chain from i to j, and we define the length of the chain to be (t−1) (i.e.,
the number of “elementary links” in the chain). A shortest benign chain from i
to j is a benign chain from i to j that has the smallest length.

Remark 1.2: The notion of a shortest benign chain is similar to, though not
identical with, the notion of a geodesic in the literature on social networks. The
main difference between the two concepts lies in the fact that our definition of a
benign chain requires that no two individuals involved in the ’chain’ should have
a hostile relation, while this requirement is not incorporated in the notion of a
path, on which the notion of a geodesic is based. It may be worth noting that
the geodesic is an important concept in the literature on social networks: it is
often taken as a measure of how far apart two individuals are; it has been used in
several of the centrality measures in social network analysis; it is an important
factor for constructing some particular social networks; and, in some writings on
communication networks, it has been assumed that the message betweeen two
individuals is transmitted through a geodesic between them. (See Wasserman
and Faust 1994 for a discussions of the importance of geodesics in social network
analysis.)

5 In our more formal definition (Definition 1.1) of a “benign chain”, we require that no two
individuals involved in the chain should have a hostile relation.
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Remark 1.3: It can be checked that: (i) if (m(1), · · · ,m(t)) is a benign chain
from i to j, then (m(t), · · · ,m(1)) must be a benign chain from j to i; (ii) the
length of a benign chain from i to j cannot exceed n− 1; and (iii) the smallest
length that a benign chain from i to j can possibly have is 1 (this happens when
iRj).

When there is a benign chain from i to j, we say that i and j are linked ;
otherwise, we say that i is isolated from j.

2. Personal Connections

In this section, we discuss some measures of the closeness of the favourable direct
or indirect relation that may exist between two distinct individuals i and j. Let
Z be the class of all two-element subsets of N .

Let ℘ be the collection of all (R,R(−)) such that R and R(−) are two binary
relations defined over N with the properties specified in Section 2. The elements
in ℘ will be denoted as R,R′, etc. An R ∈ ℘ is said to be without hostility iff
there exists no {i, j} ∈ Z such that iR(−)j.

Let R ∈ ℘ be without hostility. If, under R, (m(1) = i, · · · ,m(t) = j) is a
shortest benign chain from i to j, then for all positive integers i′ and j′ with
1 ≤ i′ < j′ ≤ t, (m(i′), · · · ,m(j′)) is a shortest benign chain from m(i′) to m(j′).

Let d : ℘ × Z → (−∞,+∞) be a function from ℘ × Z to the real line. The
intended interpretation of the d function can be explained as follows: For a given
R and any two distinct individuals i and j in N , d(R, {i, j}) denotes the degree
of personal connection between i and j, or the extent of the favourable (direct or
indirect) relation that may exist between i and j, given R. Therefore, for a given
R, for all {i, j} and {p, q} in Z, d(R, {i, j}) ≥ d(R, {p, q}) will be interpreted as
meaning that, given R, the degree of the personal connection between i and j is
at least as great as the degree of the personal connection between p and q.

2.1 Some General Properties of Personal Connections

In this subsection, we discuss some general properties of the d(·, ·) function. For
this purpose, we consider the following properties imposed on d(·, ·).

Definition 2.1 d(·, ·) satisfies:

(2.1.1) Simple Domination (I) iff, for all R,R′ ∈ ℘, all {i, j}, {p, q} ∈ Z,
if [iRj or p is isolated from q under R′] then d(R, {i, j}) ≥ d(R′, {p, q});

(2.1.2) Simple Domination (II) iff, for all R,R′ ∈ ℘, all {i, j}, {p, q} ∈ Z,
if [iRj and not(pR′q)] or [i is linked with j under R, and p is isolated from
q under R′] then d(R, {i, j}) > d(R′, {p, q});

(2.1.3) Weak Simple Domination (II) iff, for all R,R′ ∈ ℘, all {i, j}, {p, q} ∈ Z,
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if [iRj and not(pR′q)] or [i is linked with j under R and p is isolated from
q under R′] then d(R, {i, j}) ≥ d(R′, {p, q});

(2.1.4) Independence iff, for all R,R′ ∈ ℘, all {i, j} ∈ Z be such that R and R′
are without hostility, if (m(1) = i, · · · ,m(s),m(s + 1) = j) is the unique
benign chain from i to j under R, (m′(1) = i, · · · ,m′(t),m′(t + 1) = j) is
the unique benign chain from i to j under R′, then,

d(R, {i, j}) ≥ d(R′, {i, j})⇔ d(R, {i,m(s)}) ≥ d(R′, {i,m′(t)});

(2.1.5) Weak Independence iff, for all R,R′ ∈ ℘, all {i, j} ∈ Z be such that R
and R′ are without hostility, if (m(1) = i, · · · ,m(s),m(s + 1) = j) is the
unique benign chain from i to j under R, (m′(1) = i, · · · ,m′(t),m′(t+1) =
j) is the unique benign chain from i to j under R′, then,

d(R, {i, j}) ≥ d(R′, {i, j})⇒ d(R1, {i,m(s)}) ≥ d(R′1, {i,m′(t)});

(2.1.6) Neutrality iff, for all R,R′ ∈ ℘ and for all {i, j} ∈ Z, if the set of all
benign chains from i to j under R is the same as the set of all benign chains
from i to j under R′, then d(R, {i, j}) = d(R′, {i, j});

(2.1.7) Anonymity iff, for all R,R′ ∈ ℘, and all one-to-one function σ from N to
N , if, for all i, j ∈ N, [(iRj) iff σ(i)R′σ(j)] and [iR(−)j iff σ(i)R′(−)σ(j)],
then, for all {i, j} ∈ Z, d(R, {i, j}) = d(R′, {σ(i), σ(j)});

(2.1.8) Monotonicity iff, for all R,R′ ∈ ℘ and all {i, j} ∈ Z, if every benign
chain from i to j under R′ is a benign chain from i to j under R, then
d(R, {i, j}) ≥ d(R′, {i, j});

(2.1.9) Dominance iff, for all R,R′,R′′ ∈ ℘ and all {i, j} ∈ Z, if [the set of all
benign chains from i to j under R′′ is the union of the set of all benign
chains from i to j under R and the set of all benign chains from i to j under
R′] and [d(R, {i, j}) ≥ d(R′, {i, j})], then d(R, {i, j}) ≥ d(R′′, {i, j}).

Simple Domination (I) requires that, if i and j are directly connected under R
or p and q are isolated from each other under R′, then the degree of personal
connection between i and j under R is at least as great as the degree of personal
connection between p and q under R′. It is a plausible axiom, but it may be
worth noting that Simple Domination (I) rules out certain types of intuition.
Suppose iRj but (i, j) is the only benign chain between i and j. On the other
hand, suppose not[i′Rj′] but there exist 100 distinct individuals, p1,..., p100, such
that, for t = 1, ..., 100, (i′, pt, j

′) constitutes a benign chain from i′ to j′. Then,
for some intuitive purposes, the connection between i′ and j′ may be considered
closer than the connection between i and j. For example, if i′ wants to induce
j′ to do something for him, then i′ can get 100 different individuals to inter-
cede with j′ for him, and that may be even more effective than the persuasive
influence that i can exert on j through his direct friendly relation with j. Thus,
intuitively, one may like to admit the possibility that d(R, {i′, j′}) > d(R, {i, j})
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in this case. However, this is not permissible under Simple Domination (I). Sim-
ple Domination (II) extends the intuition embedded in Simple Domination (I)
further by requiring that the degree of personal connection between i and j under
R is greater than the degree of personal connection between p and q under R′ if
either i is directly connected with j under R and p is not directly connected with
q under R′, or i is linked with j under R while p is isolated from q under R′. In
our current framework, Simple Domination (II) seems plausible as well, but the
reservation that we noted in the case of Simple Domination (I) also applies to
Simple Domination (II). Weak Simple Domination (II) is a weaker requirement
than Simple Domination (II). It should also be noted that Simple Domination
(I) implies Weak Simple Domination (II).

Independence requires the following. Suppose R and R′ are without hostility.
Suppose there is a unique benign chain from i to j under each of R and R′. Let
k be the individual immediately before j in the benign chain from i to j under
R, and let k′ be the individual immediately before j in the benign chain from
i to j under R′. Then Independence requires that the ranking of the degree
of personal connection between i and k under R and the degree of personal
connection between i and k′ under R′ must be analogous to the ranking of the
degree of personal connection between i and j under R and the ranking of the
personal connection between i and j under R′. Weak Independence is a weaker
version of independence.

Essentially, Neutrality stipulates that the degree of personal connection be-
tween two individuals depends only on the set of benign chains between those
two individuals. If, in switching from R to R′, the set of benign chains from i to
j remains the same, then the degree of personal connection between i and i′ will
remain unchanged. Anonymity rules out the possibility that some people may
be more “effective” in a benign chain as compared to other people.

Monotonicity reflects the intuition that the degree of personal connection
between any two individuals does not decrease when additional benign chains
between them come into existence. Dominance has a very different type of
underlying intuition. Let R and R′ be such that the degree of personal connection
between i and j under R is at least as great as the degree of personal connection
between i and j under R′, and let R′′ be such that the set of benign chains
between i and j under R′′ is simply the union of the two sets of benign chains
between i and j under R and R′. Now compare the degrees of personal connection
between i and j under R and R′′. Note that, in going from R to R′′, we are
merging with the set of already existing benign chains between i and j another
set of benign chains (namely, those that exist under R′), which is not ‘superior’
to or ‘more effective’ than the set of already existing benign chains (we know
this since the degree of personal connection between i and j is no greater under
R′ than under R). Given this, Dominance requires that the degree of personal
connection between i and j should not increase when we make the transition
from R to R′′. How sound is this intuition? Suppose the sole purpose for
which a benign chain may be used is to convey messages from the person at
the beginning of the chain to the person at the end of the chain, and that in
sending a message to another person, the originator of the message chooses only
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one chain. Then, it is reasonable to assume that the value of a set of benign
chains is simply the value of those individual benign chains in the set, which
are most effective for this purpose. In that case, it is reasonable to postulate
that, given our specifications of R, R′, and R′′, there is no gain in terms of the
degree of personal connection between i and j when we switch from R to R′′.
However, one can think of alternative scenarios where one’s intuitiuon may go
in a different direction. Suppose, as in the counterexample that we considered
in the case of Simple Domination (I), benign chains are used to exert influence
on other individuals. In that case, merging the set of benign chains between i
and j under R′ with the set of benign chains between them under R will provide
i with an opportunity to exert more persuasive influence on j, even though,
considered separately, the former set of benign chains was no more effective
than the latter set of benign chains. In that case, Dominance can be violated.
Thus, as in the case of Simple Domination (I), and Simple Domination (II), the
appeal of Dominance depends on how we visualize the purpose of benign chains.
In this paper, our main emphsis is on the use of benign chains simply to transmit
messages. In this specific context, Dominance, as well as Simple Domination (I)
and Simple Domination (II), seems to have considerable appeal.

With the help of the above properties imposed on d, we are ready to present
the following results. Their proofs can be found in Appendix A.

Theorem 2.2. d satisfies Simple Domination (I), Simple Domination (II),
Neutrality, Anonymity, Independence, Monotonicity and Dominance iff, for all
R,R′ ∈ ℘ and all {i, j}, {p, q} ∈ Z,

d(R, {i, j}) ≥ d(R′, {p, q}) iff ([t ≤ s] or [p is isolated from q under R′]) (1)

where t is the length of a smallest benign chain from i to j under R and s is the
length of a smallest benign chain from p to q under R′.

Theorem 2.3. d satisfies Simple Domination (I), Neutrality, Anonymity, Weak
Independence, Monotonicity and Dominance if and only if for all R,R′ ∈ ℘, all
{i, j}, {p, q} ∈ Z,

[t ≤ s] or [p is isolated from q under R′]⇒ d(R, {i, j}) ≥ d(R′, {p, q})

where t is the length of the shortest benign chain from i to j under R, and s is
the length of the shortest benign chain from p to q under R′.

2.2 Personal Connections Interpreted in Terms of Message Transmis-
sion

In the preceding section, we developed a general measure of the degree of personal
connection: we showed that certain axioms characterize the ranking of degrees
of personal connection on the basis of the length of the shortest benign chains
involved. In the rest of Section 2, we develop some other measures of personal
connection, using the specific interpretation of personal connection as a means of
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transmitting messages. Under this interpretation, benign chains will be viewed
as conduits of messages from one person to another. A central idea in our
context is that when a message is transmitted from i to j via a benign chain, if
the message has to go through other individual(s) to reach j, the message will
be diluted in the process of transmission.

Throughout this subsection, we make the following assumption:

Normalization. For all R ∈ ℘ and all {i, j} ∈ Z, if iRj then d(R, {i, j}) = 1
and if i is isolated from j under R, then d(R, {i, j}) = 0.

Let R = (R,R(−)) ∈ ℘ be given. Let {i, j} ∈ Z and let C = (m(1) =
i, · · · ,m(t+ 1) = j) be a benign chain from i to j with t ≥ 1. We now introduce
the notion of C being used as a message channel from i to j. Suppose i = m(1)
sends a message of volume 1 to j = m(t + 1), using C as a message channel.
Then: (i) for every k ∈ {2, · · · , t+ 1}, m(k) receives a message in the amount of
am(k)[C] (am(k)[C] ≥ 0) from m(k − 1), the predecessor of m(k) in the benign
chain (the amount of the message received by m(k) is the same as the amount of
the message sent by m(k − 1) to m(k)); (ii) for every k ∈ {2, · · · , t}, an amount
aL

m(k)[C] (aL
m(k)[C] ≥ 0) of the message received by m(k) is lost; and (iii) for

every k ∈ {3, · · · , t+ 1}, am(k)[C] = am(k−1)[C]− aL
m(k−1)[C].

Let R ∈ ℘ be given. The next property concerns the efficiency of message
channels. Given our interpretation of benign chains as potential message chan-
nels, it seems natural to assume that the maximum amount of a unit message,
which can be transmitted from i to j, constitutes a measure of the personal
connection between i and j. This is the intuition underlying the following as-
sumption.

Assumption 2.4. For all R ∈ ℘ and all {i, j} in Z, if, according to R, there is a
benign chain from i to j, then, for some benign chain C = (m(1) = i, · · · ,m(t+
1) = j) with t ≥ 1 from i to j, d(R, {i, j}) is the amount of message received by
j from her predecessor m(t), when i uses C to send a message of volume 1 to j.

When transmitting messages indirectly from i to j, our message channel may
contain noise: some portion of the message may get lost at each stage of trans-
mission. The lost amount of the message may be regarded as reflecting frictions
for a given society. We distinguish two scenarios here. In the first scenario, the
amount of the message that gets lost at each stage of the transmission process
is exogenously given. In the second scenario, the amount of the message that is
lost at each stage is endogenously determined.

Exogenously Determined Message Loss

There are two plausible ways of looking at the indirect transmission of a message
from i to j when the loss of message at each stage of indirect transmission is
exogenously determined. In the first instance, one may assume that, when a
message is indirectly transmitted through a benign chain, at each stage of this
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indirect transmission, an exogenously given fraction of the received message is
lost and the rest is transmitted to the next stage. Alternatively, one may assume
that, when a message is indirectly transmitted through a benign chain, at each
stage of this indirect transmission, an exogenously given absolute amount is lost
and the rest is transmitted to the next stage. We shall consider both ways and
derive some implications. The proofs of our results in this subsection can be
found in Appendix B.

Exogenously Determined Proportional Message Loss. We say that the
process of message transmission is characterized by exogenously determined pro-
portional message loss iff there exists ψ ∈ (0, 1) such that, for every R ∈ ℘, all
{i, j} ∈ Z, and every benign chain C = (m(1) = i,m(2), · · · ,m(t+ 1) = j) from
i to j under R, if i sends a message of volume 1 to j through the message channel
C, then

aL
m(k)[C] = ψam(k−1)[C], for all k ∈ {3, · · · , t+ 1}.

Exogenously Determined Absolute Message Loss. We say that the pro-
cess of message transmission is characterized by exogenously determined absolute
message loss iff there exists α > 0, such that, for every R ∈ ℘, all {i, j} ∈ Z, and
every benign chain C = (m(1) = i,m(2), · · · ,m(t+ 1) = j) from i to j under R,
if i sends a message of volume 1 to j through the message channel C, then

aL
m(k)[C] = max{min{am(k−1)[C]− α, α}, 0}, for all k ∈ {3, · · · , t+ 1}.

Theorem 2.5. Suppose Normalization and Assumption 2.4 are satisfied and
the process of message transmission is characterized by exogenously determined
proportional message loss, where the fraction of message lost at each stage is
given by ψ. Then d(·, ·) satisfies Simple Domination (II), Neutrality, Anonymity,
Independence, Monotonicity and Dominance iff, for all R ∈ ℘ and all {i, j} in
Z, we have:

(i) d(R, {i, j}) = 0, if i and j are isolated under R;

(ii) d(R, {i, j}) = 1 if iRj, and

(iii) d(R, {i, j}) = (1 − ψ)t, where t ≥ 1 and t + 1 is the length of a shortest
benign chain from i to j under R.

Theorem 2.6. Suppose Normalization and Assumption 2.4 are satisfied and
the process of message transmission is characterized by exogenously determined
absolute message loss, where the absolute amount of message lost at each stage
is given by α > 0. Then, d(·, ·) satisfies Weak Simple Domination (II), Weak
Independence, Neutrality, Anonymity, Monotocity and Dominance iff, for all
R ∈ ℘ and all {i, j} in Z, we have:

(i) d(R, {i, j}) = 0, if i and j are isoloated under R;
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(ii) d(R, {i, j}) = 1 if iRj, and

(iii) d(R, {i, j}) = max{1 − tα, 0}, where t ≥ 1 and t + 1 is the length of a
shortest benign chain from i to j under R.

Endogenously Determined Message Loss

In this subsection, we consider the possibility that the amount of message loss
at each stage of indirect transimission is determined endogenously.

Endogenously Determined Message Loss. We say that the process of
message transmission is characterized by endogenously determined message loss
iff, for every R ∈ ℘, all {i, j} ∈ Z, and every benign chain C = (m(1) =
i,m(2), · · · ,m(t+1) = j) from i to j under R, when i sends a message of volume
1 to j through C, we have

aL
m(k)[C] = aL

m(k+1)[C] = am(k) for every k ∈ {2, · · · , t},

that is, the same amount of the message is lost at each stage of indirect trans-
mission and j receives the same amount of the message as is lost by m(t).

The following theorem summarizes the implication of the framework with
endogenously determined message loss. The proof of the theorem can be found
in Appendix B.

Theorem 2.7. Suppose Normalization and Assumption 2.4 are satisfied and
the process of message transmission is characterized by endogenously deter-
mined message loss. Then, d(·, ·) satisfies Simple Domination (II), Neutrality,
Anonymity, Independence, Monotonicity and Dominance iff, for all R ∈ ℘ and
all {i, j} in Z,

(i) d(R, {i, j}) = 0 if i and j are isolated;

(ii) d(R, {i, j}) = 1 if iRj; and

(iii) d(R, {i, j}) = 1/t where t ≥ 1 and t is the length of a smallest benign chain
from i to j under R.

3. The Extent of Social Networks

In this section, we discuss the issue of measuring the extent of social networks
for different societies. For a given R ∈ ℘, intuitively, the extent of networks in
R can be thought of as a function of the degrees of benign connections for all
two distinct {i, j} in Z. We use ω(R) to denote the extent of social networks in
the society given by R. Consider the following axioms to be imposed on ω(·).

Definition 3.1. ω is said to satisfy
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(3.1.1) Marginal Contribution iff, for all R,R′ ∈ ℘, for all {i, j} ∈ Z, if for all
{p, q} ∈ Z,

[d(R, {p, q}) ≥ d(R, {i, j}), ]
[{p, q} 6= {i, j} ⇒ ((pRq ⇔ pR′q) and (pR(−)q ⇔ pR′(−)q))],

and [iR′(−)jand not(iR(−)j)],

then
ω(R)− ω(R′) = d(R, {i, j});

(3.1.2) ω-Normalization iff, for all R ∈ ℘, if for all {i, j} ∈ Z, not(iRj), then
ω(R) = 0.

ω-Normalization is simply a convention and does not impose any significant
restriction on the extent of social networks. Marginal Contribution stipulates
that, if the only difference between R and R′ is that two individuals, i and j,
are non-hostile and have the “weakest” link under R and are hostile and have no
link under R′, then the change in the extent of social networks when we switch
from R′ to R is captured by the degree of the personal connection between these
two individuals under R: after all, there is absolutely no benign chain from i to
j under R′ and hence the degree of the personal connection between them under
R′ is zero.

We now state our results in this section. Their proofs can be found in Ap-
pendix C.

Theorem 3.2. Suppose d satisfies Simple Domination (I), Simple Domination
(II), Neutrality, Anonymity, Independence, Monotonicity and Dominance, and
ω satisfies Marginal Contritution and ω-Normalization. Then,

for all R ∈ ℘, ω(R) =
∑
{i,j}∈Z

d(R, {i, j}),

where d(·, ·) has the property given in Theorem 2.2.

Theorem 3.3. Suppose d satisfies Simple Domination (I), Neutrality,
Anonymity, Weak Independence, Monotonicity and Dominance, and ω satisfies
Marginal Contritution and ω-Normalization. Then,

for all R ∈ ℘, ω(R) =
∑
{i,j}∈Z

d(R, {i, j}),

where d(·, ·) has the property given in Theorem 2.3.

For illustrative purpose, we consider the following example.

Example 3.4. Let N = {1, 2, 3, 4}. For the purpose of comparison, in each of
the following social structures, I, II, III, IV and V, we assume that (a) for all
i, j ∈ N , there exists a benign chain from i to j; and (b) there exist no i, j ∈ N
such that i and j are hostile:
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I. 1R2, 1R3, 1R4, 2R3, 2R4 and 3R4;

II. 1R2, 1R3, 2R3, 2R4 and 3R4;

III. 1R2, 1R3, 2R4 and 3R4;

IV. 1R2, 1R3 and 1R4;

V. 1R2, 2R3, 3R4.

These five structures are illustrated in the following figure.
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Structure V can be regarded as an extreme hierarchy, IV as a variant of hier-
archies, III as a type of corporations, and II and I are variants of horizontal
structure. For all i, j ∈ N , let t be the length of a shortest benign chain from i
to j. Let f(t) be the degree of personal connection between two individuals for
t. Clearly, f(1) ≥ f(2) ≥ f(3). For all s ∈ {I, II, III, IV, V }, let ω(s) be the
extent of social networks under structure s. Then, we obtain the following:

ω(I) = 6f(1)
ω(II) = 5f(1) + f(2)
ω(III) = 4f(1) + 2f(2)
ω(IV ) = 3f(1) + 3f(2)
ω(V ) = 3f(1) + 2f(2) + f(3)

It is then clear that

ω(I) ≥ ω(II) ≥ ω(III) ≥ ω(IV ) ≥ ω(V ).

Thus, if one uses the extent of social networks to measure the amount of social
capital in a society, then, in our example, the extreme hiearchy offers the least
amount of social capital. This is in line with the findings of, for example, Putnam
(1983) and La Porta, Lopez-de-Silanes, Shleifer, and Vishny (1997).
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By Theorems 3.2 and 3.3, from Theorems 2.5, 2.6 and 2.7, the following
results are immediate.

Corollary 3.5. Suppose Normalization and Assumption 2.4 are satisfied. Sup-
pose further that d satisfies Simple Domination (II), Neutrality, Anonymity,
Independence, Monotonicity and Dominance, and ω satisfies Marginal Contritu-
tion and ω-Normalization.

3.5.1. If the process of message transmission is characterized by exogenously
determined proportional message loss, where the fraction of message lost
at each stage is given by ψ, then

for all R ∈ ℘, ω(R) =
∑
{i,j}∈Z

d(R, {i, j}),

where d(·, ·) has the property given in Theorem 2.5.

3.5.2. If the process of message transmission is characterized by endogenously
determined message loss, then

for all R ∈ ℘, ω(R) =
∑
{i,j}∈Z

d(R, {i, j}),

where d(·, ·) has the property given in Theorem 2.7.

Corollary 3.6. Suppose Normalization and Assumption 2.4 are satisfied. Sup-
pose further that d satisfies Simple Domination (I), Simple Weak Domination
(II), Neutrality, Anonymity, Weak Independence, Monotonicity and Dominance,
and ω satisfies Marginal Contritution and ω-Normalization.

3.6.1. If the process of message transmission is characterized by exogenously
determined absolute message loss, where the absolute amount of message
lost at each stage is given by α, then

for all R ∈ ℘, ω(R) =
∑
{i,j}∈Z

d(R, {i, j}),

where d(·, ·) has the property given in Theorem 2.6.

4. Concluding Remarks

In this paper, we have axiomatically developed measures of the personal connec-
tion between two individuals and also measures of the extent of social networks in
a society. Our analysis suggests several directions for further exploration. First,
in introducing the binary relation R (“having a good relation with”) over the set
of all individuals, we did not distinguish the varying strengths of a (direct) good
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relation—“close friendship”, “ordinary friendship”, “a mildly friendly relation”,
and so on. Intuitively, the strengths of the (direct) good relations involved in
benign chains between two individuals would seem to be relevant in assessing
the degree of (direct or indirect) personal connection between them. We have
not discussed this issue in our paper. It is an issue that deserves separate inves-
tigation. Secondly, in discussing our axioms, we have referred to contexts where
some of our axioms may not be very plausible. For example, each benign chain
from p to q may serve as a valuable channel through which p can exert persuasive
influence on q when the occasion requires it, and the benign chain may retain
this value no matter how many other benign chains may be available. In that
case, in assessing the degree of personal connection between p and q, it may
not be possible to identify the effectiveness of a set of benign chains between p
and q with the effectiveness of any single benign chain in the set. Also, in such
cases, there may be possible tradeoffs between the range of benign chains avail-
able and the consideration of the lengths of these benign chains. We have not
incorporated these aspects in our analysis; again, these aspects deserve separate
investigation.

Appendix A

Proof of Theorem 2.2. It can be checked that if (1) holds for all {i, j}, {p, q} ∈
Z and all R,R′ ∈ ℘, then d satisfies Simple Domination (I), Simple Domination
(II), Neutrality, Anonymity, Independence, Monotonicity and Dominance. We
now show that if d satisfies Simple Domination (I), Simple Domination (II),
Neutrality, Anonymity, Independence, Monotonicity and Dominance, then for
all {i, j}, {p, q} ∈ Z and all R,R′ ∈ ℘, (1) holds.

Let d satisfy Simple Domination (I), Simple Domination (II), Neutrality,
Anonymity, Independence, Monotonicity and Dominance. First, we note that,
by Simple Domination (I), for all R,R′ ∈ ℘ and all {i, j}, {p, q} ∈ Z,

if i is isoloated from j under R and p is isolated from q under R′,
then

d(R, {i, j}) = d(R′, {p, q}) (2)

and

if iRj and pR′q, then

d(R, {i, j}) = d(R′, {p, q}). (3)

Next, by Domination (II), for all R,R′ ∈ ℘ and all {i, j}, {p, q} ∈ Z,

if [iRj and notpR′q] or [i is linked with j under R and p is isolated
from q under R′, then

d(R, {i, j}) > d(R′, {p, q}). (4)
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We now show that,

Claim 1: For all R,R′ ∈ ℘ such that R and R′ are without hostility,
for all {i, j} ∈ Z, if (m(1) = i,m(2), · · · ,m(t+ 1) = j) is the unique
benign chain from i to j under R and (m′(1) = i,m′(2), · · · ,m′(s +
1) = j) is the unique benign chain from i to j under R′, then
d(R, {i, j}) ≥ d(R′, {i, j})⇔ t ≤ s.

Consider first that s = t. If s = t = 1, then, by (3), d(R, {i, j}) = d(R′, {i, j})
follow immediately. Suppose s = t > 1. Then, by the successive use
of Independence, we obtain d(R, {i, j}) ≥ d(R′, {i, j}) iff d(R, {i,m(2)}) ≥
d(R′, {i,m′(2)}). From (3), d(R, {i,m(2)}) = d(R′, {i,m′(2)}). Therefore,
d(R, {i, j}) = d(R′, {i, j}) follows immediately. Consider now that s > t. Let
s = t+ h. It should be noted that for all k = t+ 1, · · · , s, (m′(1) = i, · · · ,m′(k))
is the unique benign chain from i to m′(k) under R′. By the successive use of
Independence, we obtain d(R, {i, j}) ≥ d(R′, {i,m′(t+ 2)}) iff d(R, {i,m(2)}) ≥
d(R′, {i,m′(3)}). From (4), clearly, d(R, {i,m(2)}) > d(R′, {i,m′(3)}). Hence,
d(R, {i, j}) > d(R′, {i,m′(t + 2)}). Similarly, we can show that d(R′, {i,m′(t +
2)}) > d(R′, {i,m′(t + 3)}), · · · , d(R′, {i,m′(s)}) > d(R′, {i,m′(s + 1) = j}).
Therefore, d(R, {i, j}) > d(R′, {i, j}). This completes the proof for Claim 1.

With Claim 1, we are now ready to show the following:

Claim 2: For all R,R′ ∈ ℘ and all {i, j} ∈ Z such that R′ is without
hostility, if the length of a shortest benign chain from i to j under R
is t ≥ 1 and m(1) = i,m(2), · · · ,m(t + 1) = j is the unique benign
chain from i to j under R′, then d(R, {i, j}) = d(R′, {i, j}).

Let {C1, · · · , Ch} be the set of all benign chains from i to j under R. For
k = 1, · · · , h, let tk be the length of the benign chain in Ck. Without loss of
generality, let t = t1 ≤ t2 ≤ · · · ≤ th. Consider R1, · · · ,Rh ∈ ℘ such that, each
and every one of R1, · · · ,Rh is without hostility and for all k = 1, · · · , h, Ck is the
unique benign chain from i to j under Rk. From Claim 1 and the construction
of R1, · · · ,Rh, noting that t1 ≤ · · · ≤ th, we have

d(R1, {i, j}) ≥ d(R2, {i, j}) ≥ · · · ≥ d(Rh, {i, j}). (5)

For g = 2, · · · , h, let Rg be such that the set of all benign chains from i to j
under Rg is {C1, · · · , Cg}. Clearly, the set of all benign chains from i to j under
Rh is {C1, · · · , Ch}, which is the same as the set of all benign chains from i to j
under R. By Neutrality, therefore,

d(R, {i, j}) = d(Rh, {i, j}). (6)

Then, by Dominance, noting that the set of all benign chains from i to j under
R2 is the union of the sets of all benign chains from i to j under R1 and under
R2 and d(R1, {i, j}) ≥ d(R2, {i, j}), we obtain

d(R1, {i, j}) ≥ d(R2, {i, j}).
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Similarly, by Dominance, noting that the set of all benign chains from i to j
under R3 is the union of the sets of all benign chains from i to j under R2 and
under R3 and d(R1, {i, j}) ≥ d(R2, {i, j}) ≥ d(R3, {i, j}), we obtain

d(R1, {i, j}) ≥ d(R2, {i, j}) ≥ d(R3, {i, j}).

By the repeated use of the above, from Dominance, we obtain

d(R1, {i, j}) ≥ d(R2, {i, j}) ≥ · · · ≥ d(Rh, {i, j})

By Monotonicity, however, we have

d(Rh, {i, j}) ≥ d(R1, {i, j}).

Therefore, d(Rh, {i, j}) = d(R1, {i, j}). (6) now imlies

d(R, {i, j}) = d(R1, {i, j}). (7)

On the other hand, from Claim 1, d(R′, {i, j}) = d(R1, {i, j}). Therefore,
d(R, {i, j}) = d(R′, {i, j}). Note that the length of a shortest benign chain
from i to j under R is t1 = t, which is the length of the unique benign chain
from i to j under R′. Thus, Claim 2 is proved.

By Claims 1 and 2, we obtain the following:

Claim 3: For all R,R′ ∈ ℘ and all {i, j} ∈ Z, if t is the length
of a shortest benign chain from i to j under R and s is the length
of a shortest benign chain from i to j under R′, then d(R, {i, j}) ≥
d(R′, {i, j})⇔ t ≤ s.

To see that Claim 3 is true, consider R1,R2 ∈ ℘ such that both R1,R2 are
without hostility, (m(1) = i,m(2), · · · ,m(t+ 1) = j) is the unique benign chain
from i to j under R1 and (m′(1) = i,m′(2), · · · ,m′(s + 1) = j) is the unique
benign chain from i to j under R2. By Claim 1, d(R1, {i, j}) ≥ d(R2, {i, j}) ⇔
t ≤ s. By Claim 2, d(R1, {i, j}) = d(R, {i, j}) and d(R2, {i, j}) = d(R′, {i, j}).
Therefore, d(R, {i, j}) ≥ d(R′, {i, j}) iff t ≤ s.

Finally, we are ready to show (1). Let R,R′ ∈ ℘ and {i, j}, {p, q} ∈ Z. If
i and j are isolated under R, and p and q are isolated under R′, then from
(2), d(R, {i, j}) = d(R′, {p, q}). If i is linked with j under R, and p and q are
isolated under R′, then by (4), d(R, {i, j}) > d(R′, {p, q}). Suppose now that
i and j are linked under R, and p and q are linked under R′. Let (m(1) =
i,m(2), · · · ,m(t + 1) = j) be a shortest benign chain from i to j under R, and
(m′(1) = p,m′(2), · · · ,m′(s+1) = q) be a shortest benign chain from p to q under
R′. If {i, j} = {p, q}, then, by Claim 3, (1) follows immediately. We therefore
consider two cases: (i = p and j 6= q), and ({i, j} ∩ {p, q} = ∅). The cases in
which (i = q and j 6= p), (j = p and i 6= q), and (j = q and i 6= p) are similar
to the case in which (i = p and j 6= q). Consider first that (i = p and j 6= q).
Consider R1, R2 ∈ ℘ such that: (m(1) = i,m(2), · · · ,m(t) = q,m(t+ 1) = j) is
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the unique benign chain from i to j under R1, and (m′(1) = p,m′(2), · · · ,m′(s) =
j,m′(s+ 1) = q) is the unique benign chain from p to q under R2. By Claim 3,

d(R, {i, j}) = d(R1, {i, j}) and d(R′, {p, q}) = d(R2, {p, q}). (8)

Consider the one-to-one function σ from N to N such that: for all k ∈ N −
{j, q}, σ(k) = k and σ(j) = q, σ(q) = j. Let R3 ∈ ℘ be such that, for all
k, h ∈ N, kR2h iff σ(k)R3σ(h), and kR2(−)h iff σ(k)R3(−)σ(h). It is clear that
(σ(m′(1)) = i, σ(m′(2)), · · · , σ(m′(s)) = σ(j) = q, σ(m′(s + 1)) = σ(q) = j) be
the unique benign chain from i to j under R3. By Claim 3, we have:

d(R1, {i, j}) ≥ d(R3, {i, j})⇔ t ≤ s. (9)

And by Anonymity, we obtain

d(R2, {p, q}) = d(R3, {i, j}). (10)

Therefore, from (10), (9) and (8), we obtain d(R, {i, j}) ≥ d(R′, {p, q})⇔ t ≤ s.
Hence, (1) holds in this case. When {i, j} ∩ {p, q} = ∅, consider the one-to-one
function σ′ from N to N such that for all k ∈ N−{i, j, p, q}, σ′(k) = k, σ′(i) = p
and σ′(j) = q. Let R4 ∈ ℘ be such that for all k, h ∈ N , kR′h iff σ′(k)R4σ

′(h)
and kR′(−)h iff σ′(k)R4(−)σ′(h). Then, by Anonymity,

d(R′, {p, q}) = d(R4, {i, j}). (11)

By Claim 3,
d(R, {i, j}) ≥ d(R4, {i, j})⇔ t ≤ s. (12)

By (11) and (12), we obtain d(R, {i, j}) ≥ d(R′, {p, q}) ⇔ t ≤ s. Therefore, (1)
holds for this case.

Proof of Theorem 2.3. The proof is similar to that of Theorem 2.2 and we
omit it.

Appendix B

Proof of Theorem 2.5. The “if” part of the theorem can be checked. We now
prove the “only if” part. Let ψ ∈ (0, 1) and the process of message transmission
be characterized by exogenously determined proportional message loss. Let d
satisfy the axioms specified in Theorem 2.5. From Theorem 2.2, we need only
to show that, for all R ∈ ℘ and all {i, j} ∈ Z, if C = (m(1) = i,m(2), · · · ,m(t+
2) = j) is the unique benign chain from i to j under R with t ≥ 1, then
d(R, {i, j}) = (1−ψ)t. Since the process of message transmission is characterized
by exogenously determined proportional message loss, we have the following:
am(2)[C] = 1, aL

m(2) = 1 · ψ;
am(3)[C] = 1− ψ, aL

m(3)[C] = ψ(1− ψ);
· · ·;
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am(t+1)[C] = (1− ψ)t−1, aL
m(t+1)[C] = ψ(1− ψ)t−1;

am(t+2)[C] = (1− ψ)t−1 − ψ(1− ψ)t−1 = (1− ψ)t.

Therefore, d(R, {i, j}) = (1− ψ)t.

Proof of Theorem 2.6. The “if” part of the theorem can be checked. We now
prove the “only if” part. Let α > 0 and the process of message transmission be
characterized by exogenously determined absolute message loss. Let d satisfy
the axioms specified in Theorem 2.6. From Theorem 2.3, we need only to show
that, for R ∈ ℘ and all {i, j} ∈ Z, if C = (m(1) = i,m(2), · · · ,m(t + 2) = j)
is the unique benign chain from i to j under R with t ≥ 1, then d(R, {i, j}) =
max{1−αt, 0}. By Assumption 2.4, d(R, {i, j}) = am(t+2)[C]. Since the process
of message transmission is characterized by exgogenously determined absolute
message loss, we have
am(2)[C] = 1, aL

m(2) = α;
am(3)[C] = max{1− α, 0}, aL

m(3)[C] = max{min{am(3)[C]− α, α}m, 0};
· · ·;
am(t+1)[C] = max{1−α(t−1), 0}, aL

m(t+1)[C] = max{min{am(t+1)[C]−α, α}, 0};
am(t+2)[C] = aL

m(t+1)[C] = max{am(t+1)[C]− α, 0} = max{1− αt, 0}.

Therefore, d(R, {i, j}) = max{1− tα, 0}.

Proof of Theorem 2.7. The “if” part of the theorem can be checked. We
now prove the “only if” part. Let d satisfy the axioms specified in Theorem 2.7.
Suppose the process of message transmission is characterized by endogenously
determined message loss. By Theorem 2.2, we need only to show that, for all
R ∈ ℘ and all {i, j} ∈ Z, if C = (m(1) = i, · · · ,m(t+1) = j) is the unique benign
chain from i to j under R where t > 1, then d(R, {i, j}) = 1/t. By Assumption
2.4, d(R, {i, j}) = am(t+1)[C]. Since the process of message transmission is
characterized by endogenously determined message loss, we have
am(t+1)[C] = aL

m(t)[C] = am(t)[C],
am(t)[C] + aL

m(t)[C] = am(t−1)[C],
aL

m(t−1)[C] = am(t−1)[C],
am(t−1)[C] + aL

m(t−1)[C] = am(t−2)[C],
· · · ,
am(2)[C] = aL

m(2)[C]
am(2) + aL

m(2) = 1.

Therefore, d(R, {i, j}) = 1/t.

Appendix C

Proof of Theorem 3.2. Suppose d satisfies the axioms specified in Theo-
rem 3.2, and ω satisfies Marginal Contritution and ω-Normalization. Then, by
Theorem 2.1, for all {i, j}, {p, q} ∈ Z, all R,R′ ∈ ℘,

d(R, {i, j}) ≥ d(R′, {p, q}) iff ([t ≤ s] or [p is isolated from q under R′])
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where t is the length of a shortest benign chain from i to j under R and s is the
length of a shortest benign chain from p to q under R′.
Let R ∈ ℘ be given. If for all {i′, j′} ∈ Z, not(i′Rj′), then, by ω-Normalization,
ω(R) = 0. Assume, therefore, that i′Rj′ for some {i′, j′} ∈ Z under R. For all
{i, j} ∈ Z and all R′ ∈ ℘, let s(R′, ij) be the length of a shortest benign chain
from i to j under R′. Let {i1, j1} ∈ Z be such that s(R, i1j1) ≥ s(R, ij) for
all {i, j} ∈ Z. Consider R1 such that: for all {p, q} ∈ Z with {p, q} 6= {i1, j1},
[(pRq ⇔ pR1q) and (pR(−)q ⇔ pR1(−)q)], and i1R1(−)j1. Given that there is
at least one benign chain from i1 to j1 under R, clearly, not(i1R(−)j1). Since
{i1, j1} is such that s(R, i1j1) ≥ s(R, ij) for all {i, j} ∈ Z, for all {p, q} ∈ Z with
{i1, j1} 6= {p, q}, a shortest benign chain from p to q under R does not go through
i1 and j1. Therefore, when the only change from R to R1 involving switching
not(iR(−)j) to iR1(−)j, we must have: for all {p, q} ∈ Z with {p, q} 6= {i1, j1},
[(pRq ⇔ pR1q) and (pR(−)q ⇔ pR1(−)q)], and the set of all shortest benign
chains from p to q under R is the set of all shortest benign chains from p to q
under R1. It is then clear that R1 ∈ ℘ and d(R, {p, q}) = d(R1, {p, q}) for all
{p, q} ∈ Z with {p, q} 6= {i1, j1}. By Marginal Contribution, we must have

ω(R)− ω(R1) = d(R, {i1, j1}). (13)

Clearly, there is no benign chain from i1 to j1 under R1. If for all {i, j} ∈ Z, there
is no benign chain from i to j under R1, then by ω-Normalization, ω(R1) = 0,
and the conclusion of Theorem 4.2 follows easily from (13). Let {i2, j2} ∈ Z be
such that s(R1, i

2j2) ≥ s(R1, ij) for all {i, j} ∈ Z. Consider R2 such that: for all
{p, q} ∈ Z with {p, q} 6= {i2, j2}, [(pR1q ⇔ pR2q) and (pR1(−)q ⇔ pR2(−)q)],
and i2R2(−)j2. Following a similar argument for R and R1, we can show that
R2 ∈ ℘ and d(R1, {p, q}) = d(R2, {p, q}) for all {p, q} ∈ Z with {p, q} 6= {i2, j2}.
By Marginal Contribution again, we obtain

ω(R1)− ω(R2) = d(R1, {i2, j2}). (14)

Note that d(R1, {i2, j2}) = d(R, {i2, j2}). Therefore,

ω(R) = ω(R2) + d(R, {i1, j1}) + d(R, {i2, j2}). (15)

By repeating the above procedures and from the repeated use of Marginal Con-
tribution, since Z contains a finite number of elements, we can obtain

ω(R) =
∑
{i,j}∈Z

d(R, {i, j}).

Proof of Theorem 3.3. The proof is similar to that of Theorem 3.2 and we
omit it.
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