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Multivariate Lorenz Majorization and

Heterogeneity Measures:

An Axiomatic Approach

Abstract: This work introduces two new curves that are multivariate generalizations
of the “classical” Lorenz curve. All data of d-variate distributions can be visualized
by drawing these curves in the plane, whereas Koshevoy’s and Mosler’s generalization
by a lift zonoid in IR

d+1 can only be drawn for d = 2. The generalizations of the
Lorenz curve induce partial orderings of d-variate distributions. Furthermore, two
inequality or heterogeneity measures that are consistent with the induced rankings
are proposed. They can be considered as new generalizations of the univariate Gini
coefficient. For deciding which of the two measures is more appropriate for measuring
a sort of convergence concerning different countries of an union or of regions of a
country, we establish systems of axioms. Although these systems are reflecting natural
properties, several of the axioms are new. Moreover, by means of these axioms well-
known inequality measures are tested, too.

0. Introduction

Consider n units i, where i = 1, 2, . . . n (individuals or households or different
states of a union or ...), each of which is endowed with an attribute xi (annual
income, property value or gross national product, all of which are normalized by
the number of inhabitants). If, for instance, xi is the income of an individual
i, we call x = (x1, . . . , xi, . . . , xn) an income vector or an income distribution.
From an egalitarian viewpoint, a distribution y is improved if a richer individual
i gives a part (1 − α) · s, 0 < α < 1, of his surplus s = yi − yj to a poorer
individual j. A transfer of this kind is called a Pigou-Dalton transfer, and we
say that a distribution x is majorized by the “worse” distribution y, if x has
originated from y by one or more Pigou-Dalton transfers.

Assuming i = 1 and j = 2 for this case, we can write

(x1, x2, . . . , xn) = (y1, y2, . . . , yn) ·















α 1 − α 0 . . . 0
1 − α α 0 . . . 0

0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1















,

0 < α < 1.
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This transformation can also be generated by a doubly stochastic matrix P ,
so that x = y · P , where P is neither a permutation matrix nor the identity.

Moreover, if α = 0 and α = 1 are also permitted, this transformation is
called a T -transformation. A consequence of this fact is that no region of the
well-known Lorenz curve of y lies above the Lorenz curve of x. Also the Gini
coefficient of y is equal or greater than the Gini coefficient of x, as the Gini
coefficient is a consistent extension of the described majorization.

A new problem arises if each unit i is endowed with two or more quantities
y1i (personal income, say), y2i (property, say), . . ., ydi (leisure time, say), even if
each quantity distribution is assumed to be improved by a Pigou-Dalton transfer.

In order to illustrate this problem we will consider the normalized quantity y1

as personal income and the normalized quantity y2 as personal property, where
y1 and y2 have the same welfare estimation. We assume that an individual
with income one and property zero obtains the property 1

2 from a person with
property one and income zero. This transfer would then enlarge the economic
inequality, if both persons did not also share their incomes, since it is assumed
that income and property can be easily aggregated. However, if y1 was the
normalized leisure time which could not so easily be aggregated with property
and is sometimes a compliment of income or property, we could say that the
diversity of both persons was diminished by this Pigou-Dalton transfer as they
are more similar afterwards. In any case, we can avoid this problem of interpre-
tation if we decide that only simultaneous Pigou-Dalton transfers improve the
two dimensional distribution. That means the surplus s1 in income or leasure
time of person i is shared in the same way with the person j as the surplus s2 in
property. Observe that it is thereby unimportant if the surplus s2 comes from
person i or j.

Assuming again the case i = 1, j = 2, for

(

x1

x2

)

=

(

x11 . . . x1n

x21 . . . x2n

)

we have

(

x11 . . . x1n

x21 . . . x2n

)

=

(

y11 . . . y1n

y21 . . . y2n

)















α 1 − α 0 . . . 0
1 − α α 0 . . . 0

0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1















,

0 ≤ α ≤ 1, or
(

x1

x2

)

=
(

y1

y2

)

· P , where P is a doubly stochastic matrix.

These ideas lead to two different definitions for majorization (see Marshall
and Olkin 1979) which coincide only for one attribute or for n = 2. A further kind
of majorization, called a rowwise majorization, considers each row separately
with regard to Pigou-Dalton transfers so that separate permutations within a row
do not influence this majorization, whereas the columns presenting the individ-
uals are disfigured. One avoids the disfiguration by the following majorization:
Comparing all one dimensional weighted arithmetic mean distributions of the
rows of X and Y , which are denoted by ȳ = (ȳ1, . . . , ȳn), x̄ = (x̄1, . . . , x̄n) with

ȳi =
∑d

j=1 αjyij , x̄i =
∑d

j=1 αjxij ,
∑d

j=1 αj = 1, i = 1, 2, . . . , n, j = 1, 2, . . . , d,
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where the weights α = (α1, . . . , αd) can be chosen arbitrarily, one defines that
X is “directionally majorized” by Y if no region of every Lorenz curve of ȳ lies
above the corresponding Lorenz curve of x̄.

As the weights α1, . . . , αd can be chosen arbitrarily one also avoids the often
problematic weightselection, which should be performed in accordance with the
economic estimation or welfare judgement of the different attributes.

Using this definition we can moreover assume that every distribution of an
attribute xi is equivalent to all distributions of λ · xi, λ > 0. For that reason
we can assume that all matrices X and Y have normalized row sums, where the
exogeneously determined weight αi of the attribute xi is taken in account by an
αi-fold replication of xi. From now on we will in future consider normalized d×n
matrices X and Y where the d rows show the distributions of equally estimated
attributes of n units. (Observe that replications of the attribute reflect the
welfare importances of the attributes.)

For this case we will specialize the already explained majorization by com-
paring only the Lorenz curves of the rows x1, . . . , xd and the mean row x̄ =
1
d(
∑d

j=1 x1j , . . . ,
∑d

j=1 xnj) of X with the corresponding Lorenz curves originat-
ing from Y . If no region of these d + 1 Lorenz curves emanating from Y lies
above the corresponding Lorenz curves emanating from X , we define X as being
less inequal than Y .

This spezialized new majorization allows more comparisons because it is not
as restrictive as the previously explained majorization. Moreover, it is consis-
tent with the “correlation increasing axiom” proposed by Tsui (1999). However,
we will substitute this axiom of Tsui by two natural requirements for eluding
Bourguignon’s and Chakravarty’s (2003) critizism.

To obtain a total order we will in chapter 3 define two new multidimensional
generalizations G1 and G2 of the univariate Gini coefficient being compatible
with different majorizations which will be explained in chapter 1.

It should be mentioned that some economists who are working on welfare
research believe that the problem of measuring the inequality of a multivariate
distribution would be easily solved if the weights α1, . . . , αd of the attributes
were known by determining the trade-off between the different characteristics.
Then the valuation vector α = (α1, . . . , αd) can be considered as a price vector
by which the wealth position of the individual is determined. In the second step
an application of an univariate index of inequality leads to a multi-attribute
index’s value. However, this two-step method ignores the heterogeneity of each
column or individual, and measures only the aggregated inequality of the indi-
viduals. We do not proceed this method because the economic inequality of a
multidimensional distribution where the attributes are weighted equally could
be zero although the columns are very heterogen.

For this reason and because we do not judge economic inequality as injustice
or lack of welfare, the neutral word heterogeneity, which can be interpreted
both in a negative sense as inequality and in a positive sense as diversity or
dissimilarity, will be preferred in this paper. Moreover, by this terminology we
will distinguish our paper from papers using a social evaluation function for the



Multivariate Lorenz Majorization and Heterogeneity Measures 209

inequality measurement as it is done by many authors who are mentioned in the
working paper of Maria Ana Lugo (2005).

At last it will be shown that the suggested multivariate Gini coefficient G1

respects the heterogeneities of all attributes more than the heterogeneity of the
mean, whereas the measure G2 respects the heterogeneity of the mean more than
the heterogeneities of the attributes. However for measuring the convergence to
the equal distribution in practice, the measures G1 and G2 are both suitable, as
shown by an example in the appendix.

1. A New Majorization

According to Marshall and Olkin (1979) we consider a nonnegative d × n ma-
trix Y = (yij) where each of the n columns y′

1, y
′
2, . . . , y

′
n shows one of the d

attributes of the n individuals we compare1. We assume cardinally measurable
nonnegative attributes, for instance personal income, property, leisure and so on.
(The attributes need not be independent because of the possible replications we
mentioned in our introduction.) At first we will recapitulate five common defi-
nitions for the majorization of a d × n matrix X by an other d × n matrix Y .

Definition 1.1 We say “X is chain majorized by Y ”, denoted by X ≪ Y , if
X = Y ·P , where P is produced by a finite number of T -transformations meaning
that exactly two columns x′

i, x
′
j of X come from two columns y′

k, y′
ℓ of Y by the

transformation
(x′

i, x
′
j) = (y′

k, y′
ℓ) · T

where T =

(

α 1 − α
1 − α α

)

, 0 ≤ α ≤ 1, i, j, k, ℓ ∈ {1, ..., n}.

Because of T = αI + (1 − α)Q, where I is the identity and Q is a permutation
matrix, our definition is not different from Marshall/Olkin’s definition. It can
be visualized by the possible position of the vectors x′

i, x
′
j if for instance y′

k, y′
l

are given and α = 0.4.

y ′
l

x ′
i

x ′
j

y ′
k

Fig. 1.1

1 We follow the notations and terminology of Marshall and Olkin, Koshevoy 1995 and

Savaglio 2002, whereas many other authors use a transposed notation.
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Definition 1.2 We say “X is majorized by Y ”, denoted by X < Y , if X = Y ·P ,
where the n × n matrix P is doubly stochastic.
The special case that X and Y are 1 × n-matrices (i. e. row vectors x and y),
is included and defines the meaning of “x < y”. (Joe and Verducci 1993 call this
majorization “Uniform majorization”.)

Definition 1.3 We say “X is rowwise majorized by Y ”, denoted by X <row Y ,
if for each row xi of X and the corresponding row yi of Y the equation xi = yi

·Pi holds , where Pi is a doubly stochastic n × n matrix.

This definition is equivalent to the following property

akX < akY , k = 1, 2, . . . , d,

with ak := (0, . . . , 0, 1, 0, . . . , 0), all coordinates being zero without the k-th co-
ordinate which is one.
The following first implication is well-known and can be easily proved as the
product of two doubly stochastic matrices is always a doubly stochastic matrix.

Theorem 1.1 X ≪ Y =⇒ X < Y =⇒ X <row Y .

Marshall and Olkin show that the converse of the first implication is not true for
d ≥ 2 and n ≥ 3. They show that with the aid of the doubly stochastic matrix





1
2

1
2 0

1
2 0 1

2
0 1

2
1
2



which is not a product of T -transformation matrices.

The converse of the second implication is wrong for d ≥ 2, which can be already
seen from the example given in the introduction.
Between X < Y and X <row Y there is an other majorization defined by Bhan-
dari (1988) which is called “Directional majorization”.

Definition 1.4 We say “X ist directionally majorized by Y ”, denoted by X <D

Y , if a X < a Y for any row vector a ∈ IRd.
The Directional majorization <D is also called “price majorization” (see Mosler
1994, where a survey on majorization in economic disparity measures is given).
A consequence of X <D Y is that every weighted arithmetic mean of the rows of
Y is more dispersed than the weighted arithmetic mean of the rows of X using
the same weights, which can be interpreted as prices.
The majorization <D is equivalent to another majorization called “Lorenz ma-
jorization”, which means that the “Lorenz zonotope”
LZ(X) is enclosed by the Lorenz zonotope LZ(Y ) (see Koshevoy 1995). The
following well-known implications can easily be proved, too.
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Theorem 1.2 X < Y =⇒ X <D Y =⇒ X <row Y .

Proof.
X < Y means that there exists a doubly stochastic matrix P with X = Y · P .
Hence we have aX = aY P . Because of aY P < aY for all arbitrary vectors a, we
have X <D Y , such that the first implication is proved. The second implication
is a trivial consequence of both definitions.

The inverse of the first implication is not true for n ≥ 4, which can be seen
by an example given in the appendix where we will prove that for n = 2 all
majorizations ≪, <, <D are equivalent. Moreover there will be proved that for
n = 3 the relation X <D Y implies X < Y .

The converse of the second implication is wrong for d ≥ 2. This can be seen
by the example given in the introduction if we take the vector a = (1, 1) which
implies (1.5, 0.5) 6< (1, 1).

Between X <D Y and X <row Y we will now define a new majorization
which is a special case of “<D ” considering only matrices X and Y , normalized
by the welfare importance.

Definition 1.5 We say “X is slightly Lorenz majorized by Y ”, denoted by X <L

Y , if akX < akY for ak = (0, . . . , 0, 1, 0, . . . , 0),
k = 1, 2, . . . , d, and ad+1X < ad+1Y , where ad+1 :=

(

1
d , 1

d , . . . , 1
d

)

.
This means that every row of X is derived from the corresponding row of Y

by means of separate T -transformations, and the same is true for the arithmetic
mean x̄ of all rows.

It is important that this order is consistent with the “correlation increasing
majorization axiom” proposed by Tsui (1999), which demands: Switching the
attributes of two individuals i and j so that individual i gets yki = min{xki, xkj}
for all k = 1, . . . , d and individual j gets ykj = max{xki, xkj} for all k = 1, . . . , d,
increases not only the correlation between the individuals i and j in X but also
the inequality grade of X . This switching is called “correlation increasing trans-
fer” defining the order X <C Y . (For this definition and notation see Thibault
Gajdos and John A. Weymark 2005.) It is obvious that this transfer increases
also the spread of ad+1X so that the implicationX <C Y =⇒ X <L Y holds.
We also note

Theorem 1.3 X <D Y =⇒ X <L Y =⇒ X <row Y .
The converse of both implications are wrong. (X 6<L Y =⇒ X 6<D Y is logically
equivalent to the first implication.)
The following example shows that X <L Y does not imply X <D Y .

Example 1.1 Let X =





3 1
1 3
4 0



 , Y =





4 0
0 4
4 0



 be matrices of distribu-

tion.
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Then we have X <L Y as akX < akY, k = 1, 2, 3, and a4X =
(

8
3 , 4

3

)

= a4Y ,
whereas b4X = (5, 3) > (4, 4) = b4Y for b4 = (0, 1, 1). Hence X 6<D Y .
This example shows that the intuitively assumed heterogeneity is supported by
<L and not by <D. The following example will show that X <row Y does not
imply X <L Y .

Example 1.2 Let

X =





0.1 0.9
0 1
0 1



 , Y =





1 0
0 1
0 1



 .

be matrices of distribution.
Then we have X <row Y and X 6<L Y as

a4X =

(

0.1

3
,
2.9

3

)

6<

(

1

3
,
2

3

)

= a4Y .

It is true that the first attribute in X is not as broadly spread as the first
attribute in Y , however the individuals in X appear to be more inequal than the
individuals in Y , since one is inclined to aggregate the attributes belonging to
each individual. Although the correlation of the attributes in X seems greater
than in Y , the correlation increasing axiom does not work because there are no
switches.

A further example containing all possible switches shall test the intuitively
believed heterogeneity.

Example 1.3 Let

X1 =

(

1 2 3
1 2 3

)

, X2 =

(

3 2 1
1 2 3

)

, X3 =

(

1 3 2
1 2 3

)

,

X4 =

(

3 1 2
1 2 3

)

, X5 =

(

2 3 1
1 2 3

)

, X6 =

(

2 1 3
1 2 3

)

be matrices of distribution. Observe that the heterogeneities of all six matri-
ces are considered as equivalent with regard to <row . This coincides with
the view that the attributes are totally separated from the individuals. On
the other hand there is no comparison by means of ≪, <, <D possible. How-
ever, the correlation increasing axiom decides X2 <C X4 <C X3 <C X1 and
X2 <C X5 <C X6 <C X1 so that X2 is the best distribution and X1 the worst
distribution. Moreover, we have X4 <C X6, but between X4 and X5 or X3 and
X6 there are no decisions. With regard to <L we have also to compare the rows
(1
2 , 1

2 , 1
2 )Xi: (1, 2, 3), (2, 2, 2), (1, 2.5, 2.5), (2, 1.5, 2.5), (1.5, 2.5, 2), (1.5, 1.5, 3),

in order to obtain the heterogeneity position.
From this viewpoint the heterogeneity of X2 is less than the heterogeneities

of all other matrices, and X1 has the highest heterogeneity as all other rows
a3Xi come from a T -transformation of (1, 2, 3).
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-

6

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9

Fig. 1.2

Moreover, we obtain X4 <L X5 and X5 <L X4 so that both matrices have the
same heterogeneity. The comparisons are completed by X5 <L X6. However,
the decision between X3 and X6 is not possible by means of <L.

The order which is effected by <L can also be visualized by the Lorenz curves
of the 3×2 elements of the Xi, extended by the elements of the third rows. This
idea will now be explained in detail.
Denoting the extended matrices by X̄i we get

X̄1 =





1 2 3
1 2 3
1 2 3



 , X̄2 =





3 2 1
1 2 3
2 2 2



 , X̄3 =





1 3 2
1 2 3
1 2.5 2.5



 ,

X̄4 =





3 1 2
1 2 3
2 1.5 2.5



 , X̄5 =





2 3 1
1 2 3

1.5 2.5 2



 , X̄6 =





2 1 3
1 2 3

1.5 1.5 3



 .

An ascending order of the nine elements of every matrix X̄i,
i = 1, 2, . . . , 6, produces the row vectors

x1 = (1, 1, 1, 2, 2, 2, 3, 3, 3), x2 = (1, 1, 2, 2, 2, 2, 2, 3, 3),

x3 = (1, 1, 1, 2, 2, 2.5, 2.5, 3, 3), x4 = (1, 1, 1.5, 2, 2, 2, 2.5, 3, 3),

x5 = (1, 1, 1.5, 2, 2, 2, 2.5, 3, 3), x6 = (1, 1, 1.5, 1.5, 2, 2, 3, 3, 3) .

The Lorenz curves of these six distributions x1, . . . , x6 are only different be-
cause of the elements coming from the third rows of X̄i, and these elements
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decide the order of the xi and Xi according <L, respectively. So the Lorenz
curve of x1 is at least as low as all other Lorenz curves. Fig. 1.2 shows the
Lorenz curves of x1 and x2.

Drawing all six Lorenz curves one can see that X2 <L X4 =L X5 <L X3 <L

X1 holds, but there is no decision between X3 and X6. In order to get a decision
it is obvious that we will analogously to the univariate Gini coefficient G define
a multivariate Gini coefficient G1 as the ratio of the well known areas of the
polygone and the triangle. Doing so we get G1(X3) = 34

9·18 < 35
9·18 = G1(X6) .

2. Multidimensional Heterogeneity Measures

Inspired by, but different from Tsui (1995) and Tsui (1999) where properties
of multidimensional inequality measures are formulated as axioms, we demand:
A heterogeneity measure I : X → IR+, where a d × n matrix X represents
the situation of n individuals possessing d nonnegative cardinally measurable
attributes, should fulfil the following axioms.
(A0) Continuity axiom

I is continuous.
(A1) Normalization axiom

0 ≤ I(X) ≤ 1 for all X and
I(X) = 0 iff the n columns of X are identical.

(A2) Anonymity axiom

a) I(X) does not change if the rows of X are permutated.
b) I(X) does not change if the columns of X are permutated.

(A3) Transfer axiom, aggravated by (A∗
3)

I(X) ≤ I(Y ) for X ≪ Y , (A∗
3) : I(X) ≤ I(Y ) for X <L Y .

(A4) Zero Homogeneity axiom

I(X) = I(CX), where C = diag(c1, . . . , cd) is a diagonal matrix
with ck > 0, k = 1, 2, . . . , d, so that one can make all positive
row-sums identical, especially one.

(A5) Reduction axiom, aggravated by (A∗
5)

I(











x11 x12 . . . x1n

x11 x12 . . . x1n

...
...

...
...

x11 x12 . . . x1n











)
(A5)
= cI(











x11 x12 . . . x1n

0 0 0 0
...

...
...

...
0 0 0 0











)

(A∗

5)
= G(x11, x12, . . . , x1n)

where c is a constant depending on the dimension d, and G is the
normal univariate Gini coefficient.

(A6) Antisplitting axiom

I(X) must not be generally insensitive to a separate permutation
within a row while the other rows are unchanged.

Some remarks on these axioms will explain and add comment to these require-
ments. (Note that for d = 1 the axioms (A0), (A2), (A3), (A4) are also required
for concentration measures (see Koshevoy and Mosler 1999.)
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With regard to (A1):
If one takes the volume of the zonoid as an heterogeneity measure, in order
to extend the univariate Gini coefficient, the inverse implication of (A1) is not
fulfilled. That is the reason why Koshevoy and Mosler (1996) suggested the
“expanded” volume as a “volume Gini mean difference” which according to our
transposed notation is defined by

MV (X)=
1

2d − 1

d
∑

s=1

1

ns+1

∑

1≤i1<...<is≤d

∑

1≤r1<...<rs+1≤n

|det

(

1

A
r1...rs+1

i1...is

)

|

where 1 is a row of ones, and A
r1...rs+1

i1...is

is the matrix obtained from the rows
i1, . . . , is and the columns r1, . . . , rs+1.
Moreover, as already mentioned in the introduction, any two-step inequality
measure does not fulfil the inverse implication of (A1) if X is normalized.
With regard to (A2):
These natural axioms are required for the rows and the columns because the
attributes or individuals can be arranged or ordered arbitrarily.

With regard to (A3) and (A∗
3):

The requirement (A3) is indispensable for every multidimensional heterogeneity
measure. If the attributes are totally independent so that no aggregation of
the attributes makes sense, we have to drop <L and consequently (A∗

3) which
considers the arithmetic mean of the attributes. But if we can assume that the
attributes could substitute each other partially we can require (A∗

3) in order to
reach a decision in cases comparable with example 1.3.

With regard to (A4):
As the Gini coefficient is a relative heterogeneity measure it is clear that any
generalization of the Gini coefficient must fulfil a special zero-homogeneity.
The objection that the same estimation of every attribute is too specific can be
rejected by the agreement that a doubly important attribute is represented by
two identical rows.

With regard to (A5) and (A∗
5):

In the axiomatic research of univariate heterogeneity measures there is no doubt
that “cloning” of a population should not change the heterogeneity measure of
the population. For this purpose Tsui (1999) demands the Replication Invari-
ance (RI): Inr(X, X, . . . , X) = In(X) for any r. On the other hand if all rows
xi of the matrix X are λix1 (that means by assuming (A4), all rows ai of the
normalized X̄ are identical) we have a “cloning” of the first attribute. From this
point of view the cloning of one attribute should not change the multivariate
heterogeneity measure, too. As a consequence it is necessary to make c = 1 for
all d as an aggravation of (A5). However this requirement would cause a problem
if we want to generalize the univariate Gini coefficient G(x). The reason for this
problem is that the Gini coefficient is normalized by the mean of the only row x
and we do not want to normalize the multivariate coefficient I(X) by the mean
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of only one row, but rather by the mean of all xij . However, by the latter mean
and the demand c = 1 in (A5) we obtain a contradiction since the mean of all
elements xij taken from the two matrices in (A5) are different. For that reason
we remove the requirement for c = 1 and instead include the other aggravation
(A∗

5) of (A5) which guarantees a generalization of the normal Gini coefficient.

For instance, demanding (A5) with c = 1 the first generalization of the Gini coef-
ficient in Koshevoy and Mosler (1997) called the “distance-Gini mean difference”
which (according to our proposal) is defined by

MD(X) =
1

2n2d

n
∑

i=1

n
∑

j=1

(

d
∑

s=1

(xsi − xsj)
2

)1/2

,

should be changed. A possible change is

M̃D(X) =
1

2n2d

n
∑

i=1

n
∑

j=1

d
∑

s=1

|xsi − xsj |

which fulfils (A5) with c = 1.
(The measures 2dMD and 2dM̃D are desirable because of the attractive interpre-
tation as the mean of the Euclidean distance or the mean distance, induced by
the ℓ1-norm, of two individuals who were taken one by one from the population
by the same chance with probability 1/n, see Rao 1982.)
Observe that for d = 1 M̃D(X) coincides with MD(X) and MV (X).
However, a better change of MD in order to fulfil (A∗

5) is the multiplication of

MD(X) with
√

d
µ where µ := 1

n2

∑n
i,j=1...n xij . We prefer the measure

√
d

µ MD(X)

as it fulfils (A6), too, whereas 1
µM̃D cannot fulfil (A6).

With regard to (A6):
Let us regard only two individuals with d attributes. If every permutation of the
coordinates within a row which is not caused by a permutation of both columns
does not change the heterogeneity measure, we cancel out any individuality. As
we do not agree with this effect, (A6) is required to be adhered to.

3. New generalizations of the Gini coefficient

Definition 3.1

1. In order to define the generalization G1 of the Gini coefficient G, we start
with the original d × n matrix X = (xij), which can be normalized so that
the row-sums are equal to one (without loss of generality). The resultant
matrix is denoted by X̄ = (aij).

2. We extend X̄ by a row ad+1 which is the arithmetic mean of the other

rows. The resultant matrix is denoted by
=

X.
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3. We calculate the normal Gini coefficient of the (d + 1) × n elements of
=

X and call it the Generalized multivariate Gini coefficient G1, which is
defined by

G1(X) =
2 ·
∑m

j=1 jaj − (m + 1)
∑m

j=1 aj

m
∑m

j=1 aj
,

where m = n × (d + 1) and the aj are the m ascendingly ordered aik, i =

1, 2, . . . , d + 1, k = 1, 2, . . . , n of the extended matrix
=

X.

Theorem 3.1

The heterogeneity measure G1 fulfils the axioms (A0), . . . , (A6) as well as (A∗
3)

and (A∗
5).

Proof.
(A∗

5) is fulfilled as the normal Gini coefficient fulfils the so-called Replication
axiom, i. e. “the heterogeneity value of n data is unchanged if these data are
cloned d-times.”
(A1) is fulfilled, since the value of the normal Gini coefficient lies between zero
and one and is zero and only zero if the n data are identical. Moreover, the
idendity of all rows of X means the identity of all n × d elements of X̄ .
(A4) is fulfilled because of the definition of G1(X).
The axioms (A0) and (A2) are fulfilled because of the definition of G1(X) and
as the normal Gini coefficient has these properties. This is also true for the
aggravated transfer axiom (A∗

3) and the last axiom (A6).

One disadvantage of the axiom (A∗
3) is caused by the majorization <L which

graphically does not show the heterogeneity of the attributes of each individual
as the data of each individual are no longer connected after having arranged all

n × (d + 1) data of
=

X in increasing order. That is the reason why we suggest
another heterogeneity measure2. For this purpose we start with the steps 1 and
2, already defined in Definition 3.1. Then we add three further steps:

3. We draw the Lorenz curve belonging to the row ad+1 of X , that is the
mean of the other rows, and call it the “mean Lorenz curve”.

4. The attributes of each of the n individuals are ascendingly ordered, and
the data divided by d are drawn as n separate Lorenz curves lying beyond
the mean Lorenz curve. These n separate Lorenz curves are consequently
drawn with the scales 1/d of the original coordinates.

5. The ratio of the area between the n convex Lorenz curve pieces and the line
of zero disparity and the area of the triangle bordered by the line of zero
disparity and the x-axis we denote G2(X) which is consequently defined
by

2 This separable measure was suggested by Wolfgang Bischoff, whom we thank very much

for several private communications.
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Definition 3.2

G2 is the sum of the Gini coefficient of the n mean attributes ad+1,j and the n
Gini coefficients of the attributes of each individual multiplied with the weight
1
d

∑d
i=1 aij/n

∑n
j=1 ad+1,j implying the formula

G2(X) =
2
∑n

j=1 jad+1,j − (n + 1)
∑n

j=1 ad+1,j

n
∑n

j=1 ad+1,j

+

1
d·d
∑n

j=1

(

2
∑d

i=1 iaij − (d + 1)
∑d

i=1 aij

)

n
∑n

j=1 ad+1,j
,

where the n numbers ad+1,j ∈
=

X, j = 1, 2, . . . , n are ascendingly ordered, and the
d numbers aij ∈ X̄, i = 1, 2, . . . , d are arranged in increasing order for every
fixed j ∈ {1, 2, . . . , n}.

G2 is, because of this interpretation, very close to the univariate Gini coefficient
G, which is so popular that Shorrocks (1984) seems to deplore that it does not
belong to the class of decomposable inequality measures he characterizes. (He
mentions that the Gini coefficient ist decomposable under all non-overlapping
partitions of the income distribution and suggests to extend the research in this
direction. However, this way cannot lead to a characterization.)
It is remarkable that the matrices X3 and X6 in example 1.3 have the same
heterogeneity number G2(X3) = 7/36 = G2(X6).
G2(X3) and G2(X6) are also illustrated by the polygonial areas in the following
figures.
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Fig. 3.1

One can verify that G2(X) fulfils the axioms (A0), (A1), (A2), (A3), (A4),
(A∗

5), (A6). We have to accept that (A∗
3) is not generally fulfilled by G2(X)
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which can be demonstrated by the following example.

Example 3.1

Let matrices of distributions be

X =





1
2

1
2 11

2 0 10
7
2

17
2 0



 , Y =





1 0 11
2 0 10
3 9 0



 ,

where both matrices have the mean row vector a4 = (2, 3, 7), so that we have
X <L Y .
At first we calculate
G1(Y ) = G((0, 0, 0, 1, 2, 2, 3, 3, 7, 9, 10, 11) = 308

12·48 = 0, 534,

G1(X) = G(0, 0, 1
2 , 1

2 , 2, 2, 3, 7
2 , 7, 17

2 , 10, 11) = 305
12·48 = 0.529,

implying G1(X) < G1(Y ) in accordance with (A∗
3).

Because of G2(Y ) = 134
18·18 = 0.4135 < 135

18·18 = 0.4166 = G2(X), the axiom (A∗
3)

is not fulfilled by G2 (which is only possible for n ≥ 3).

Comparing with the measure
√

d
µ MD we note that it supports the decision of

G1, but it shows a “bad reaction” as to the example 1.3

MD(

(

1 2 3
1 2 3

)

) = MD(

(

3 2 1
1 2 3

)

) < MD(

(

1 3 2
1 2 3

)

)

meaning that by a permutation of the “most heterogeneous” distribution the
heterogeneity number can grow. However, we think that a mixing of a “well
ordered” multidimensional distribution - unimportant if the attributes are in-
dependent - should never increase the heterogeneity number. We will therefore
require this property as a new, but natural weak axiom, being a consequence of
axiom (A∗

3) as well as a consequence of the correlation increasing axiom.

(Ã3) Mixing axiom.

The heterogeneity number I(











x11 x12 . . . x1n

x11 x12 . . . x1n

...
...

...
...

x11 x12 . . . x1n











)

will not be increased by any permutation within a row which disturbs the former
order of the attributes.
This “mixing” axiom can be motivated by a consideration coming from physics:
We know that disturbing an order increases the entropy. Reaching the maximal
entropy of a closed system makes all participants “equal”. We can also say:
“Decreasing order makes a decreasing inequality”.
One can easily prove that the previously suggested measure MD fulfils the nat-

ural axioms (A1), (A2), (A3), (A4), (A
∗
5), (A6) if we multiply it with

√
d

µ , but ex-

ample 1.3 shows that MD and MV do not fulfil the weak axiom (Ã3). For that
reason we will give preference to the new measure G2 which fulfils(Ã3). The
properties of G1(X) and G2(X) are now summarized by
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Theorem 3.2

The first generalization G1(X) of the Gini coefficient fulfils the system of axioms
(a) (A0), (A1), (A2), (A

∗
3), (A4), (A

∗
5), (A6).

The second generalization G2(X) of the Gini coefficient fulfils the system of ax-
ioms

(b) (A0), (A1), (A2), (A3), (Ã3), (A4), (A
∗
5), (A6)

which demands less than the system (a).

The proof of this theorem works equally as well if the unweighted arithmetic
mean ad+1 in Definition 3.1 and Definition 3.2 is replaced by any weighted arith-
metic mean of the rows a1, . . . , ad, and we will denote the so generalized measures
G̃1 and G̃2.

Proof.
It should firstly be noted that (a) and the majority of (b) are analogously proved
as in Theorem 3.1. For simplification we assume that all rows of X and Y are
already normalized.
In order to prove that G̃2 fulfils (Ã3) we observe that in the special matrix X
with identical rows the weighted mean xd+1 is the row (x11, x12, . . . , x1n) and
G̃1(X) = G̃2(X). Then any permutation of a row, which changes X reduces
the spread of xd+1. Thereby the number G̃1(X) is reduced and, because of
G̃2(X) ≤ G̃1(X), an increase of G̃2(X) is impossible. Hence G̃2 fulfils (Ã3).
Finally, we have to prove in (b) that G̃2(X) fulfils (A3). As X ≪ Y implies
X <D Y the mean row x̃d+1 originating from X is in any case less broadly spread
than the mean row ỹd+1 originating from Y . Now we consider the generalized
formula in Definition 3.2 and assume that X comes from Y by a T -transformation
concerning the first two columns. Then the formula G̃2(X) contains the term

d
∑

i=1

(2i − d − 1)[αyi1 + (1 − α)yi2] +
d
∑

i=1

(2i − d − 1)[(1 − α)yi1 + αyi2],

which does not depend on α ∈ [α, 1]. As the T -transformation diminishes the
Gini coefficient of the mean vector (ỹd+1,1, . . . , ỹd+1,n) for 0 < α < 1 the rest
of the numerator in the formula is diminished, whereas the denominator in the
formula is always unchanged. Since further T -transformations do not increase
the value G̃2(Y ), the proof of (b) is completed. Thus we have G̃2(X) ≤ G̃2(Y ).
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4. Conclusions

We feel it is necessary to reiterate that the antisplitting axiom (A6) requires that
the attributes of the individuals must not be separated from the individuals.
Such separation could be avoided if the attributes are aggregated by any mean.
And this mean is restricted by (A∗

3) to the arithmetic mean, whereas the mean
is not affected by (A3). Therefore it can be freely chosen.
(For instance we could also prove Theorem 3.2 if the weighted arithmetic mean
ỹd+1 vector was substituted by

(

√

∑d
i=1 yi1,

√

∑d
i=1 yi2, . . . ,

√

∑d
i=1 yin

)

or

(
∑d

i=1 yi1,
∑d

i=1 yi2, . . . ,
∑d

i=1 yin).)

However requiring only (A3) this axiom should be fulfilled in addition to
the weak requirement (Ã3) which cannot be fulfilled by modifications of the
previously introduced measures MD and MV fulfilling (A6). On the other hand
any modification of M̃D fulfilling (Ã3) cannot fulfil (A6). These facts are an
additional motivation for the use of the new measures G1 and G2.
Comparing Figures 1.2 and 3.1 we obtain more information from Figure 3.1.
Moreover G2, which is visualized by Fig. 3.1, does not prefer X3 or X6. There
is no doubt that the geometrical interpretation of G2 is more easily understood
than the interpretation by a lift zonoid.

For that reason we believe that politicians who are interested in the conver-
gence of the regions of their responsibility have a better insight by the geometrical
interpretation of G2. This aspect is important in states where the legal power is
divided by a Federal Constitution as it is in the Federal Republic of Germany.

On the other hand the aggregation of the attributes has a greater influence
on the inequality or heterogeneity number if we use G2 instead of G1. That can
be demonstrated by the “doubtful” situation in the example mentioned in the
introduction, which does not fulfil the premises of (A3), (A

∗
3) and (Ã3):

Y =

(

1 0
0 1

)

and X =

(

1 0
1
2

1
2

)

There we have G1(X) = 13
36 < 16

36 = G1(Y ) and, because of the more widely
spread mean row, we have G2(X) = 3

8 > 2
8 = G2(Y ).

It is obvious that the weight of a welfare aspect aggregating the attributes
can, in extreme cases, change the heterogeneity position of X and Y . However,
for measuring the convergence to the equal distribution in practice the measures
G1 and G2 are equally suitable as shown in the appendix.

Appendix

In this appendix the concluding remarks are supported by means of an example
which is given by Koshevoy (1995, 98):
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Suppose, the bundle (10 2
3 , 14 2

3 ) is distributed among four participants, where
the matrices of distributions are

A =

(

1 2 2
3 3 4

6 3 2
3 3 2

)

and B =

(

1 2
3 2 3.5 3.5
5 4 2

3 2.5 2.5

)

.

Estimating both attributes as equally important we have to compare the corre-
spondent matrices

X =

(

66 176 198 264
288 176 144 96

)

and Y =

(

110 132 231 231
240 224 120 120

)

.

Then we calculate G1(X) = 0.17282 and G1(Y ) = 0.1450 which is 83.91 % of
G1(X). Further we calculate G2(X) = 0.04936 and G2(Y ) = 0.04261 which is
86.33 % of G2(X).

As the mean distributions x̄ = (177, 176, 171, 180) and
ȳ = (175, 178, 175.5, 175.5) are both only a little spread, the absolute hetero-
geneity numbers G2(X) and G2(Y ) are much smaller than G1(X) and G1(Y ),
whereas the ratios G2(Y )/G2(X) and G1(Y )/G1(X), indicating the convergence
to the equal distribution, are almost the same.

Now we will show the already indicated equivalence of the majorizations
≪, <, <D for n = 2, meaning that the distributions of only two units are com-
pared:

Proof:
It is obvious and already mentioned in Marshall/Olkin (1979, 431) that ≪ and <
are equivalent for n = 2, so we have only to prove that for n = 2 the majorization
<D implies the majorization <.

At first we have to notice that






x11 x12

...
...

xd1 xd2






= X <D Y =







y11 y12

...
...

yd1 yd2







is equivalent to







λ1x11 λ1x12

...
...

λdxd1 λdxd2






<D







λ1y11 λ1y12

...
...

λdyd1 λdyd2







for all λi 6= 0 as instead of multiplying X and Y with a = (a1, . . . , ad) we
can also multiply with aλ = (λ1a1, . . . , λdad) without changing the majorization
aX < aY because the vector a can be arbitrarily chosen.

If a row of Y is (yi1, yi1), then the corresponding row (xi1, xi2) of X must
also be λ(yi1, yi1) because of X <D Y . As all rows of X and Y of this kind
have no influence on the relations <D and <, such rows will be excluded in the
following considerations.



Multivariate Lorenz Majorization and Heterogeneity Measures 223

Assuming that the first rows of X and Y are not excluded, we take a =
(1, 0, . . . , 0), and have

(x11, x12) < (y11, y12)

that means the existence of a matrix Pα =

(

α 1 − α
1 − α α

)

for α ∈ [0, 1] such

that

(x11, x12) = (y11, y12)Pα. (1)

Now we will show that also (xi1, xi2) = (yi1, yi2)Pα holds for i = 2, . . . , d, where
for all λi ∈ IR we have (yi1, yi2) 6= λi(y11, y12). Then we can unite these d equa-
tions to X = Y · Pα, and X < Y is proved:

The assumption that there exists a row i ∈ {2, . . . , d} with for instance

λ(x21, x22) = λ(y21, y22)Pβ , λ 6= 0, (2)

where Pβ =

(

β 1 − β
1 − β β

)

is different from Pα, leads to the equation

(x11 − λx21, x12 − λx22) = (y11, y12)Pα − λ(y21, y22)Pβ . (3)

On the other hand by multiplying X and Y with a = (1,−λ, 0, . . . , 0) we must

have a matrix Pγ =

(

γ 1 − γ
1 − γ γ

)

with

(x11 − λx21, x12 − λx22) = (y11 − λy21, y12 − λy22)Pγ

= (y11, y12)Pγ − λ(y21, y22)Pγ ,
(4)

where, different from α and β, γ depends on λ.

Hence the thereby implied equation

(y11, y12)Pγ − λ(y21, y22)Pγ = (y11, y12)Pα − λ(y21, y22)Pβ

leads to the equation

(y11, y12)(γ − α)

(

1 −1
−1 1

)

= λ(y21, y22)(γ − β)

(

1 −1
−1 1

)

implying

(γ − α)(y11 − y12) = (γ − β)λ(y21 − y22). (5)
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Because of y11 − y12 6= 0 and λ(y21 − y22) 6= 0 a consequence of (5) is that for
γ = α or γ = β the equality α = β = γ must hold.

On the other hand the equation (5) is equivalent to

γ(y11 − y12 − λ(y21 − y22)) = α(y11 − y12) − βλ(y21 − y22) (6)

Defining λ := y11−y12

y21−y22
we have to distinguish two cases:

1. The right side of (6) is zero.
Then we can choose γ = α implying γ = β because of (5).

2. The right side of (6) is not zero.
Then we get a contradiction in (6), so that this case must be excluded.

In order to prove that for n = 3 the majorization <D implies the majorization
< it is advantageous to use the equivalence of the “Lorenz majorization” and the
“directional majorization” meaning that the Lorenz zonotop LZ(X) lies in the
Lorenz zonotop LZ(Y ) (see Koshevoy 1995). Abstaining from the normalization
of the height of both zonotops we can thereby conclude
X = (x′

1, x
′
2, . . . , x

′
n) <D Y = (y′

1, y
′
2, . . . , y

′
n) ⇐⇒

{

α1

(

1
x′

1

)

+ α2

(

1
x′

2

)

+ . . . + αn

(

1
x′

n

)

}

⊂
{

β1

(

1
y′

1

)

+ β2

(

1
y′

2

)

+ . . . + βn

(

1
y′

n

)

}

0 ≤ αi ≤ 1, i = 1, . . . , n 0 ≤ βi ≤ 1, i = 1, . . . , n

For n = 3 this inclusion means x′
j = λ1jy

′
1 + λ2jy

′
2 + λ3jy

′
3,

0 ≤ λij ,
∑3

i=1 λij = 1, i, j = 1, 2, 3.

In this case we have X = Y · P with X = (x′
1, x

′
2, x

′
3), Y = (y′

1, y
′
2, y

′
3) and

the bistochastic matrix

P =





λ11 λ12 1 − λ11 − λ12

λ21 λ12 1 − λ21 − λ22

1 − λ11 − λ21 1 − λ12 − λ22 λ11 + λ12 + λ21 + λ22 − 1





meaning X < Y .

For n = 4 the implication “X <D Y =⇒ X < Y ” can be wrong if not every
column vector of Y (in IR2) is a boundary point in the convex hull of the column
vectors (see Bhandari 1988). This is the case in the following extremely simple
example

X =

(

0.25 0.25 0.5 0.5
0 0.5 0.5 0.5

)

<D Y =

(

0 0.5 0 1
0 0.5 1 0

)

,

where the nonexistence of a doubly stochastic matrix that transforms Y to X
follows from Lemma 3 in Koshevoy (1995). The example given by Koshevoy
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(1995, 98) should also show that B <D A and B ≮ A is possible, but LZ(B) ⊂
LZ(A) is wrong. That is the reason why an other example is necessary to show
that for n ≥ 4 the case “X <D Y and X ≮ Y ” is possible.
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